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Propositional Unsatisfiability 
 

So, let us look at some techniques Propositional Unsatisfiability. So, the simplest and the 

probably the its not actually the oldest but for some reason it is important because it is used in all 

logic programming systems. 
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But, so we looked at a tautology checking and one of the important things of the tautology 

checker is that at some point you had to compute the conjunctive normal form of essentially a 

big consumption of formulae implying some other conjunction. So, this implication rewritement 

rewriting of this implication into or essentially means at your conjunctive normal form has to 

take this big AND and covert it all into all write by Demorgan’s law. So, in that sense this is 

actually quarter bit of effort for one thing and it of course increases the size of the formula 

tremendously.  
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So, and any way finally when you looked at a tautology cheker it finally involve falsifying the 

argument falsifiers and then based on that deciding whether it is a tautology or not. So, the 

falsifiability of the argument was an important aspect of that tautology of the checker design. 
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But, if you look at something like this theorem its here you have this take the second part. The 

second part is just a huge conjunction of formulas. So, if you have all the hypothesis you take the 



hypothesis of an argument phi1, phi2, phi3 etcetera up to phi n. And you take the negation of the 

conclusion that is not psi and this psi is logically follows from the set phi1 to phi n if and only if 

this huge conjunction is actually a contradiction or it is unsatisfiability. So, since we had 

falsifying falsifyability as the converse of the tautology checker. Then, actually I think to do is to 

look for unsatifyability of this and this huge conjuction has a certain advantage. And that is that 

if I am anyway going to use a conjunctive normal form. Then, having a conjunction at the top of 

a large number of formulae means that I can now apply a sort of a devide and conquer technique 

I can just convert each individual conjunct into a conjunctive normal form. 

So, which means I deal with smaller size formulae convert theorem into CNFs and then the huge 

we got a list of list of literals in our tautology checker then that just means appending all the lists 

that we get together. So, which means we just append all this so you convert each individual 

conjunct into a CNF that is a smaller problem you essentially think of it as small problems and 

then you have to append all the lists to obtain the required list of lists of literals. So, in the certain 

sense if you are committed to using a conjunctive normal form. The use of this theorem is likely 

to therefore, be more time efficient than the use of a tautology checker design. As we did before 

so, and that is in fact what actually resolution theorem proving that right. 
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So, let us quickly look at it Propositional Resolution. And so essentially what we are saying is 

therefore, to show that some finite set gamma of to show that formula psi follows from a finite 

set gamma of propositions. We just show that the big AND of gamma and not psi is false is 

unsatisfiable. By first transforming this huge formula big AND not psi into a formula in 

conjunctive normal form. So, this will of course represent this conjunctive normal form as a set 

of sets of literals. Normally in form while, you are doing programming it is usually as a list of 

list of literals. But, I will look at it as a set of sets of literals because essentially because, of the 

importance of both conjunction and disjunction. Duplicate occurrences do not matter or actually 

better thing to in order to reduce the size of the formula is to remove duplicate occurrences.  

So, supposing think lets capital delta be the set of sets of such literals. Where, each set of literals 

is called a clause and, each clause in delta essentially represents at disjunction of literals. And, 

the empty clause represents a contradiction junction of literals. What is a empty clause I mean 

why is it represent the contradiction? Supposing, I have an empty set of literals. So, what should 

that actually be. 
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If, now that I gone from the language it self to just literals and sets of literals and sets of sets of 

literals. Then, the question of interpreting what happens to an empty set in each case is 

important. So, what is a correct interpretation for the empty set I mean that is an important 



question. So, suppose think let us look at this problem this way. Supposing in delta is empty that 

means there are no clauses in delta. What does this empty set represents? This is the standard 

thing in algebra is to take the identity element. So, delta actually represents a big conjunction of 

a collection of clauses C1 to Cn. And, what we are saying now if this big conjunction if n equals 

to 0 then, essentially you have a big conjunction of essentially an empty set of clauses. So, you 

obviously the identity element of conjunction is going to be the answer right this is the standard 

right.  

Let us go to the arithmetic the starting point of let us see the summation and product the 

summation is the entity element. If, I doing a summation over on empty set of numbers then the 

answer has to be 0. The whole point is this if I take any set of numbers and I add 0 to that set and 

I do not say a summation in anyway. Because, 0 is the entity element for the sum so if I just take 

the empty set just like having the set containing 0 so the answer is going to be 0. So, if I want to 

take the empty product all the product computations are actually starts with the entity element of 

multiplication so if i take the empty product this going to be equal to 0. What is the identity 

element of conjunction? The identity element of conjunction is true. Or if, you like the brown 

one so which he said if delta were empty then this conjunction of delta this conjunction actually 

gives you what. However, supposing in delta actually content supposing, if delta was non empty. 

And it contain some elements along with it it contained an empty set. So, this is the empty set of 

literals is also a member of delta. First thing as any set of delta inside it represents a disjunction 

of literals. So which we set this empty set which, means this empty set actually represents the 

identity element of disjunction which is false. So this has to be false. So if, this is false this delta 

represents a conjunction of a set of clauses which means you are conjuncting with false and false 

is 0 for conjunction. And therefore, then this entire conjunction then becomes false is that is fine. 

So, that is what if the set does contain the empty clauses in a element then you already reached a 

contradiction it does not matter what other clauses are there in this.  

So, this is what actually resolution uses the fact that if you can somehow derive the empty clause 

as one of the clauses in your set of clauses. Then, you have already found a contradiction which 

means all of the clauses then become irrelevant. So, this is what so let us look at Propositional 

Resolution. And we have it is a good idea to look at all these algorithms or a propositional view 

point so, that the extension to first order and other kinds of logics then becomes easy. Because, 



all of the logics have propositional logic as a sub languages always so these are the basic 

connectives right and or and not so this is a propositional resolution. So, the important thing is so 

the techniques that you are looking at are I mean if you at this if you look at the truth table 

technique. 
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For example, so the main problem about the truth table is that it is not discriminating enough I 

mean you construct regardless of whether a certain atom is relevant or not relevant for the 

validity i mean.  
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Supposing, even if this argument were valid I can add a whole lot of nonsensical sentences to 

this argument which you do not have any argument with the atoms of this argument and still the 

argument will be valued. Now, if I add all those nonsensical sentences also with there own atoms 

then the number of atoms increases, then the size of truth table increases and the construction of 

the truth table does not discriminate between what is a relevant atom and what is not a relevant 

atom for the validity of the argument. Where as what we would like to do in order to reduce the 

sizes of the sets of formulae and in order to speed up proving is reduce sizes as reduce the 

number of atoms possible or look at only those sets of atoms. So, the falseifiability in the 

tautology checker was the way of looking that only the relevant atom right which could provide a 

clue as to the validity or the invalidity of the argument. Similarly, in resolution we are actually 

going to so in resolution similarly this is what is going to happen. So, it provides a directed way 

of looking for contradictions use using literals. 

And contradictions are easily obtained by looking at positive and negative literals. So, if there is 

an some atom which occurs throughout the argument only in either positive form or in only in 

negative form. Then, that atom is irrelevant to irrelevant to both tautology or it is a contradiction 

that atom can atmost make the entire formula. That you create a contention formula rather than 

which means depending on the truth of the atom may be it might be true or false you know so 

that atom becomes completely irrelevant. So, all are efforts are actually directed towards trying 



to firstly reduce sizes of formulae, secondly using some directed approach which will focus on 

proving a contradiction or proving a tautology. And for that we require to essentially derive the 

empty class.  
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So, essentially the what of course in general for any kind of propositional resolution it is not 

particularly true of logic programs. But, it is if you can also use resolution for improving 

technique for any kind of argument that is right. So, one thing is we let us look at this finite set of 

clauses so let us assume that the delta is the final set of finite set of clauses. And, we have to just 

find out whether this set is unsatisfied that is what the problem of resolution theorem 4.3.2 gives 

you I can just look upon a set of formula and, ask whether they unsatisfied you there this is a 

contradiction. So, one thing of course is clear so I have a number of clauses and I might have two 

clauses C and C prime such that one is the subset of the other in this set delta.  

Now, each clause represents a disjunction of literals. Which means, C prime if C is a subset of C 

prime then C prime represents a larger disjunction than C. Which, means C prime is irrelevant to 

proving whether it is a contradiction right so the entire class C prime can be deleted. Because, 

whenever C is true C prime is guaranteed to be true. So, since we are looking at this as since 

these are two members within a delta its taking C and C prime. And, C and C prime where, C is a 



disjunction of literals where C prime is supper set of C is equivalent to just C. So, it is not just 

preserves truth it also preserves false. 

So, delta with this C prime removed is still logically equivalent to the original delta which had 

the C prime right. So, the first thing is that all such clauses may be deleted from delta and of 

course we are looking at sets if you are looking at lists instead. Then, as I said then you have to 

put in an artificial ordering and in ordering because checking permutation I mean checking 

whether one list is a sublist of another. Without sorting them in some reason in some way means 

it is essentially determining whether some sub list of the other one is the permutation of the first 

list. And, determining permutations is quite complicated right. So, what I mean if I look at the 

problem of finding the median of a list of elements. I can do that in less than n log n but if i look 

at the larger context in which i have to do such things such a operations also then its simpler to 

just sort the list. And essentially hammertoes the cost that extra factor that sorting gives over all 

the other operations that I might have.  

So, for example the quality is very easy to check if they are sorted I do not need to consider 

permutation list the quality checking is just linear. So, that itself is where as permutations are 

actually n square or minimum of n square. So, that is a problem so I can just delete such clauses. 

The second thing is suppose in any clause C contains a complementary layers of course it is a 

literal so they could be both p and naught p in C. Since, if C represents a disjunction of literals 

therefore the existence of all of the p or naught p makes all of the literals are relevant or 

irrelevant. And, this clause C becomes true becomes logically equivalent to true if this clause C 

becomes logically equivalent to true it presence a delta does not affect whether the clause exists 

or not. So, any clause which contains a complementary pair of literals which can be deleted from 

delta without affecting the logical literals. So, it is this is not something most resolution 

mechanism tell you to do. But if you do not do this clean up very often we will slip up in your 

algorithm and you will not get a contradiction.  

Or, you will ask you something a contradiction which is not because this complementary pair 

will allow you to derive something like an empty set. Whether that is an empty clause or an 

empty set of clauses is a question that you have to ask because that is it is the new difference that 

tells true and false right. So, we need to do this clean up the most works and resolutions do not 

even refer to it. The third thing of course from the idiom ports of and and or its clear that the 



duplicate occurrences of a literal may be deleted from each clause. This also includes duplicate 

occurrences of clauses because, there is a subset or equals so you can delete duplicate 

occurrences of a literal from any clause without affecting logical equivalence you might. So, this 

clean up gives you a new set of prime which hopefully is smaller than delta. And of course what 

it satisfies this logically equivalence. So, what we have done so far is that we have actually done 

a cleanup which preserves logically equivalent to do so. It is not usually true was derivations do 

not preserve logically equivalence usually they preserves truth or satisfiability. But, this clean up 

operation alone look that in isolation actually preserves logically.  

Student: (Refer Time: 24:00) 

each of them is or of literals  

Student: How could we delete the supper set  

Because, what you are saying is you have so this what we are saying is you have C.  

(Refer Slide Time: 24:31) 

 

Which, say some literals say l1 to lm. And you have C prime which is lets say l1 to lm and let us 

say after some ln then, what you have the fact that C and C prime both belong to delta means that 

you are looking at or of C, or of the literals in C and or of the literals in C prime. So, if you are 

looking at this then what happens this set this is just logically equivalent to l1 or lm.So, that is 



just equivalent to or of c so I can delete the prime. So, the reason that i am doing all this because, 

when i actually started doing some resolution proof by hand. I was suddenly found that I was 

suddenly structured at various some points because, these books do not mention that you know 

there has to be clean up done. And there has to be this otherwise you will be leading irrelevant 

clauses and literals you will not be able to derive an empty clause.  

Because, you did not delete the irrelevant literals. So, here actually in this particular case the 

entire clause C prime is irrelevant. If, it continued to exists if you did your resolution and you 

may not get an empty set at all if you happen to do the resolution with C prime. And so you will 

be start you will think actually that you could not derive an empty clause. And therefore, the 

argument is invalid which is a wrong assumption. So, this clean up is actually essential in 

actually programming it many people just I mean it has to be just like nobody discuss sorting 

algorithm inside or a tautology checker really. This clean up is also never discuss really in any 

work that does the resolution. But, this clean up needs to be done other wise it actually get wrong 

business.  
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Then, the actual Resolution Method is I start with a clean set by the way this word clean is 

introduced because, I had to introduce the word. So, I start with a clean set delta and so which 

means that. And I look and I choose any atom so relevant atom is one which some is an atom 



such that there is a naught p also somewhere in the delta. So, let us look at all the clauses which 

contain p and let us call them Lambda. And Lambda bar be the set of all clauses which contains 

naught p. So, now you all focus you had already brighten your focus only on the relevant atoms 

only those atoms which have complementary pairs somewhere both positive and negative form 

somewhere in the delta are relevant all other atoms are irrelevant. So, any atom which occurs 

only in one form either positive or negative is irrelevant resolution. So, there straight away goes 

off the so again sorting the atom, sorting the relevant so on makes sense in choosing such an 

thing.  

For example if, you use an sorting algorithm. Or if you use the total ordering in which the 

negation of an atom immediately precedes the positive version or immediately succeeds a 

positive version. Then, just looking through the list of atoms you know the which complimentary 

price exists the entire sets. Since, delta is the clean set first thing I take these thing Lambda or 

Lambda bar are the subsets of delta. The first thing of course is that they have prejoint sets 

because, they have p because delta have p. They have to be disjoint because any clause which 

contains p cannot contain naught p. So, the set of clauses which contain p is completely different 

from the set of clauses which contain naught p. So, this delta and delta bar are disjoint but how 

are individual clauses C and C bar may not be is joint they have some common atoms. 

For example or else they might have some common literals. The other thing of course is that C 

and C bar are mutually exclusive as far as p is concerned. One of them contains p at the other 

contains naught p. The one that contains p does not contain naught p. The one that contain does 

not contain p. So, they are exclusive with respect to p. Once you have done that so we do what is 

known as an operation called resolution on this complementary pair set p naught p. And that is a 

function so what we do is we start with delta. So, essentially we take these sets these two sets 

Lambda and Lambda bar and our resolution has to resolve on every C Lambda with every C bar 

in Lambda bar. And what does it do and then what do I do I take the unions of the sets after 

removing p and p bar from the two from each pair of clauses. So, from each pair of clauses C and 

C bar I remove p and naught p and take the union. I do this for each pair C and C bar in Lambda 

and Lambda bar. So, what is the net result net effect? I get a new set delta prime but, this set 

delta prime is not necessarily equivalent to the original delta that is the first thing. What it does 

preserve is it preserves a satisfiability condition. 



Delta is satisfiable if and only if delta prime is satisfiable and vice versa. Actually since, we are 

looking at a resolution method which is suppose to give you a contradiction we are saying 

essentially that delta is unsatisfiable if delta prime is unsatisfied. So, we are actually moving 

away from logical equivalence. So, this is resulting delta prime if you think of it as a conjunction 

of disjunctions of sets of literals is not logically equivalent to the original data. And but, what it 

does preserve is that if the original delta were unsatisfiable this one would also be unsatisfiable. 

This union tends to increase the sizes of clauses and if for example delta had if Lambda has k 

clauses and Lambda bar has m clauses. The fact that your taking all pair C and C bar and 

performing the resolution this is. So, this last two C belonging to Lambda and C bar belonging to 

Lambda bar means that you are actually taking you might actually be increasing the size number 

of clauses in the set delta prime. So, if you look at the cardinality of delta prime. Delta prime 

may not necessarily be a smaller than delta in terms of number of clauses and in terms of sizes of 

clauses that are common that are there in the two. But, what are the properties does this have. 

Student: (Refer Time: 34:42) 

That is right what this does is it removes one atom completely from delta. So, if you look at since 

p and naught p this atom p occurs only in Lambda and Lambda bar. This operation I am 

removing p and naught p from all elements C and C bar even though, you are taking the union 

and you are taking all possible pairs of C and C bar. And therefore, you might be increasing the 

sizes of the clauses even though you are doing all that the number of atoms the total number of 

atoms in a delta decreases by 1. 
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So, that I mean that is crucial in order to show that this algorithm terminates. So, in fact what you 

do is the clean set of clauses and while I have used the empty list here this could be the empty 

set. While the empty set does not belong to delta if the empty set belongs to delta you got a 

contradiction already here. If, the empty set does not belong to delta and there is a 

complimentary pair p, p prime and delta a p naught p in delta. Then, what you do is you create a 

delta prime which resolves delta with respect to this atom p. The result of that is to give you the 

delta prime which, is possibly larger but it reduces the number of atoms by 1. And what you do 

is you clean up delta prime and call this delta and give this rate on this file. So, the fact that one 

atom gets removed in each iteration of this loop guarantees termination.  

So, what are the possibilities and terminations? Either an empty clause appears that some point in 

which case you have proved that your original argument is valid. Or the empty clause does not 

appear but there is no complimentary pair left you cannot do any more resolution right. If, that 

happens what is it mean it means that since this new delta that you have got it is actually 

satisfiable. Since, there are no complimentary price I can give some truth assignments to the 

individual atoms and somehow make the whole of this latest delta true. Which, means the same 

assignments can be applied to the original arguments the atoms in the original argument. And of 

course in the process I have done various things to the various complimentary pairs but now it 



does not matter assign any truth value to those atoms which got eliminated. And you have a 

satifying assignment problem original argument.  

Which, proves that the original argument is invalid because you had negated the conclusion right 

so right. So, this is what resolution does it is important that so this is the only so this is the 

actually the only proof of termination would be that you are there are only a finite number of 

atoms in delta. And therefore, this has to terminate somehow if in the process of resolution you 

remove one atom every time in every iteration of the resolution you have to terminate. So, when 

you terminate you either terminate with an empty clause as an element of delta. Or, you 

terminate with no complimentary pairs of elements in which case those that also provides you 

the satisfying truth assignment to show the invalidity of the original argument. So, basically you 

do not care what truth assignments are given to the atoms which were eliminated as 

complimentary price only the atoms that are left are unresolved a truth assignments to them will 

also gives you a truth assignment to the original to prove the original invalidity of the atom. Let 

us do quickly an example by hand. So, here is some data logic program which I thought I will 

just do. So here is. 
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So, I will write it as a set of sets of literals. So, here is something so what we are essentially 

doing is I am going to take this is too simple so I will take some complicated one. Let us do this 



let us take this I have this set of sets I am using small letters for atoms b, e naught b, c, b, d, 

naught c, d, a, d naught a and then naught. You are able to all of this so I have this so essentially 

what I do is. I choose some any complimentary pair so one possibility is to choose this a and 

naught a. And do a resolution a nothing has a in it not a so this is the single resolution which will 

just give me this. So, essentially what it will do is it will replace the set I have to take this union 

without so I get naught c and d right. That is what I get. So, notice that d is common to both 

clauses and of course this is a cleaned up version right this is I am looking at sets. Of course 

now, I can so essentially this here in this particular case the number of clauses is reduced but and 

actually the size of the clauses is also reduced. But that is not necessarily true if I consider this 

pair. So, if I look at this I can do a resolution on b here and then I can do another resolution on b 

here. So, what this will give me is I set e, c and what this will give me is set c, d. So, now well so 

essentially e and d are irrelevant these are all these are clean set of clauses so I basically I have 

replaced these two sign I am actually working to its termination in a very significant fashion. So, 

I have only these three clauses right now. Which, of course and there is a naught d also. Now, 

actually I have one possibility is of course treate use d itself as to resolve in this case I have to do 

two resolutions like this. So, both of these are on d and this resolution gives me essentially 

naught c here. And this resolution gives me c here and of course strictly speaking so I actually 

have now three clauses. And strictly speaking I have to do resolution with of both of these 

clauses this clause naught c. But however, so if you want to do that so essentially what you get is 

this derives a empty clause.  

And this derives e right. So, you are left with essentially just two clauses of which one of the 

clauses is empty the fact that you have derived the empty clause actually shows at this 

conjunction or disjunctions is or contradiction. And so it is important to realize that because of I 

mean the empty set has to be an element of the delta so the delta cannot be empty. If, delta were 

empty ever then of course it is automatically true right. So, that is not something that is possible 

if you started with an empty set of literals. You would actually have to derive an empty clause 

and this is an empty clause. So, this empty clause essentially shows that it is a contradiction so 

unsatisfied of this so notice that if you were to take this formula. And you were to take this what 

is this I mean this is just false. It it is true that they both they lead to a contradiction but in 

general a resolution process does not preserve logically there is something that is happening 

there.  



But, of course the main problem in resolution still is the fact that you have to compute a 

conjunctive normal form and that can be actually quite expensive. And what we would like to do 

is look at methods which do not necessarily involve doing such conversions. So, these 

conversions especially using the distributive laws are very expensive so something that does not 

necessarily use this conversions equivalences which block sizes of formulae. Here, is something 

that we require is what is happens with what is known as a Tabular method. So, the interesting 

thing about the tabular method is the it is a very symmetric sort of method which and it also 

proves the unsatifiability. But, without actually taking the formula taking a huge conjunction 

trying to compute conjunctive normal forms nothing have to sort. So, it just takes a formula. 
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So, essentially what we are saying is that we start with the formulae phi1 to phin and we have 

naught psi. We have rules the interesting thing about the tabular method is that that the rules are 

symmetric with respect to the underlines semantics that we have provided. So, you take the 

Boolean algebra it contains actually any Boolean algebra is also complete lattice. And therefore 

the lattices can be inverted the principle of duality holds and therefore you exploits that in order 

to the symmetric. So, the essentially whether when you are looking at tautology and 

contradiction tautology and contradictions are dual concepts. There is nothing about either so 

instead of focusing on truth or just focusing on false you actually use both truth and false both in 



i a way to derive a unastifiability. So, what actually this system has is that it has rules so you take 

this language you take the language of tautology.  

And you create a new better language you create a language on top of that. And that language on 

top of it underling language and and writes 0s or 1s in front of each of these. So, I am treating 

both so this better languages consists of one prefix of 0 or 1 before each formula. So, I am 

treating truth and false symmetrically and what I am going to do now is essentially we are going 

to look at conditions under which a formula is true and conditions under which a formula is false. 

And we equal to create a tree remember this resolution methods are also used to create a tree. 

This creates a branching structures and creates a final node so this is like a tree and tabular 

method is also a tree except that the tabular method has just like the resolution method it has a 

notion of consumption of a formula. Here, look at this resolution this clause not be your c is 

being used twice. That is what the resolution method wants to do all possible pairs C and C bar 

have to be resolved on a complimentary pair. The tabular method is most efficient in the sense 

that a formula is used exactly ones. There is a notion of consumption in which ones you have 

read the formula and applied the rules for that formula you does not use the formula again. So, 

this fact this is what makes tabular somewhat more efficient than resolution the fact that no 

formula can be used more than ones in the tabular method that is an important aspect of a tabular 

method.  

So, what will do is I will second important aspect of the tabular method is that it treats both truth 

and false symmetrically. And it also creates a tree but it has a notion of consumption of formulae 

and ones a formula has been consumed it is never used again whereas most of the proof systems 

actually might use a formula more than ones. We will do that when we prove the axiomatic proof 

systems we will do that also. But, the tabular method is very interesting is that because it has its 

beautiful structure which is just which uses both truth and false with equal priority. And comes 

up with what are known as close tabular so will just will define the conversion of a close tabular 

and completely close tabular is what gives you an unsatisfied tabularity result.  


