
Logic for CS
Prof. Dr. S. Arun Kumar

Department of Computer Science
Indian Institute of Technology, Delhi

Lecture - 5

Identities and Normal Forms

Let us start lecture five, so before we do that I will like to quickly go through some of the

stuff that we have already done in lecture four.

(Refer Slide Time: 00:46)

For example, some of the concepts, here are some let us quickly go through these logical

validity does not belong to the language. So, you are asking if you are asking whether

topologic can ever be logically invalid, the answer is it cannot be there. I mean if you

look at this validity, for example the validity symbol is black in color, it is metallurgical

symbol. It is a symbol of the mathematics of the mathematical logic and not and is not a

symbol of the language of propositional logic.

So, whatever is symbol of language of propositional logic would be green in color like

this phi is green in color, though I am not sure whether you can actually see it, see the

see the color differences. So, this we defined the notion of logical consequence, so we

just say that a proposition phi is a logical consequence of some set of propositions

gamma, where this set of this set of proposition gamma is a, it could be finite or infinite

in general.

Let us say we will think of it as being finite, so basically if any truth assignment that

satisfies all the formulas of gamma also satisfies phi, then you would say that phi is the

logical consequence of gamma. When the set gamma is empty, we just call it logical

validity, so essentially what you are saying is that the truth of phi does not depend upon

on the any other the truth of any other assumptions. For example, that denotes logical

validity and of course if you just strike through that symbol, then it denotes in validity or

that something is logically in valid or it s not a logical consequence of some of a set of

formulae.

(Refer Slide Time: 03:12)

This is logically in valid does not mean contradiction every contradiction is logically

invalid that is true, but even every contingent we have is also logically invalid. A

contingent proposition is one for which there is at least one truth assignment for which it

will be true. There is at least truth assignment for which it will be false, so that is

logically valid simply because there exists a truth assignment in which all the

assumptions are true. They are not assumptions, so that is that revile holds and the

conclusion is false.

So, that is any contingent or contradiction is logically invalid, so we have this notion of

logical, so we have various these are actually theories of these are thermos of the theory

of logic. Essentially, what these theorems tell us is that there is a translation of many of

the metrological concept in to concepts in the language itself. So, in particular if gamma

is a finite set, then size any formulae then size a logical consequence of gamma and only

if you can form this huge formulae and prove that if it is a tautology, then size trivially a

logical consequence of gamma. So, that shows that many of the reasoning concepts that

we use can also be expressed with in the language of logic itself in some other terms.

(Refer Slide Time: 05:18)

So, the proof for this as I said will have to be done through the semantics of by using the

semantics of propositional logic and please go through this proof, I will not go through it,

now then there are other theorems.

(Refer Slide Time: 05:32)

For example, here if again gamma is a finite set and then size a logical consequence of

gamma if and only if this entire sequence of conditionals is a valid formulae, which is the

same as saying that this huge formula should be a tautology. Similarly, here is the next

one, where we construct this entire formula and negate the conclusion and put a

conjunction of all of that. That should be a contradiction, this entire formula should be a

contradiction, and then we would say that size a logical consequence of gamma. So, one

thing is of course a formula is a phi tautology if and only if the negation of phi is a

contradiction.

(Refer Slide Time: 06:34)

Then, we had the notion of logical implication, now just like logical consequence logical

implication is also a concept of the theory of logic rather than something with in logic

itself. So, it is not within the language of logic it only relates two formulae, so we would

say that phi logically implies xi if and only if phi arrowed xi. Now, this is a single

formula, these are two formulas related by this relation, where this is a single formula in

the language phi arrowed xi and we are saying that should be logically valid. In other

words means that it has to be a tautology, so logical implication also can be brought

down to the conditional.

Similarly, there is logical equivalent, normally the word the term tautology is employed

only for those forms which come from propositional tautology in any higher order in any

other logic like first order logic. So, we are talking about propositional forms, so as I said

p or naught p is the tautology in in fact phi or naught phi is also a tautology for any

formula phi even in any first order logic or any other logic. This is the form that you

have and a positive and its negation on the two sides of or that form.

That shape of formula is a tautological form, so the phi in those logics can be some other

formula within that logic, but any logic in which propositional logic is some sub set all

the tautological forms will be called tautologies. In addition, there could have logically

valid formulas which do not satisfy propositional tautological forms. So, that is where

the difference is going to come, you can think of a think of it as a structure, in which you

can plug in things.

(Refer Slide Time: 09:14)

So, the phi or naught phi you can think of it as you can think of it as this structure and in

any logic and you can think of this structure as a tautological form. If it takes in some

parameter in any logic, it takes in only a single parameter not 2, not 2 or more

parameters, but think of it as a single parameter form in which you can put copies of this

anywhere. Then, this is always going to be a tautology, it does not matter whether you

whether it is propositional logic or first order logic or some model logics or any other

kinds of logics in which extension of propositional logic.

On the other hand, when you other operators in other logics they might have logically

valid forms which do not have this propositional structure, I mean which are not entirely

up of propositional operators. For example, they could, but they are not called

tautologies, there only called valid forms, not necessarily the notion of reduction is also

something that needs to be formulized. So, we cannot we cannot use that terms blindly if

what you are saying is that all tautological forms, all tautologies are logically equivalent

to each other.

That is fine because you are saying that that is semantic statement reduction has to do is

a proof theoretic statement. It is not a semantic statement, so this is what we had was

logical implication and its and we had you have logical equivalence also, which we did

and last time I think we made sure that, logically equivalence is the carnal of logical

implication.

(Refer Slide Time: 11:13)

So, you take the intersection of implication and its converse and that common set is the

set of all is the equivalence relation on rho naught on p naught. The other thing we show

we did last time was that we showed that logical equivalence is the congruence which

boils down to in any algebraic system to show some congruence. It boils down to

showing that equals those the congruent elements are replaced, replaceable by congruent

elements in any context and usually that boils down.

(Refer Slide Time: 12:00)

These facts that the particular case of this language, means that it is showing that it is

preserved under negations. So, we would say that relation is being preserved under

negation and similarly, we will say that this equivalence relation has to be preserved

under these operations. So, these are all up binary operations, so what it means is that

you take any formula, what you are saying is that and you take any of these binary

operators. So, I am using star to denote any of them and you are saying phi star should be

logically equivalent to size, if i is logically equivalent to xi and similarly this is like

taking a frame work and plugging replacing phi which is there in it.

If it is not in any way perturbed by that, then you would say that is a congruence relation,

so most of our theories of numbers. For example, real numbers the notion of equality is a

congruence relation, so in fact all your addition, subtraction, multiplication, they are all

they all preserve equality on numbers in theory of sets. For example, set equality is also a

congruence relation, on the other hand in the in the theory of finite sets, I could define an

equivalence relation, which says that a set a is equivalent to set b. They both have the

number of elements, they need not be the same elements, and they have the same number

of elements.

So, finite sets, then this equivalence relation is not a congruence because I can take two

sets a and a prime, which are equivalent in terms of cardinality, but a union b for

arbitrary be may not be same as a prime union b. For example, that equivalence relation

is not a congruence relation, so you have to for any equivalence relation is necessary to

determine whether it is preserved under the operators. That are of interest to you, so

logical equivalence is the congruence and that brings us to essentially defining these

identities.

(Refer Slide Time: 14:28)

So, for example, these identities actually most of them directly come from the equilateral

relation on Boolean algebras.

(Refer Slide Time: 14:34)

So, what the equilateral relation on Boolean algebra is the typical example of congruence

and these identities are essentially linguistic versions of those Boolean identities. So, you

can see that, so for example for any five and bottom five or bottom is going to be equal

to 5. Then, there are the usual things distributive laws or distribute, so where and

distribute, so what or there are de Morgan’s laws not of or is the not gets distributed or

gets replacement. Similarly, then there are these things like simplification and inversion

and there is this negation law, for example double negation cancels both of them.

So, what this means now is that in any logical context if you see a sub term of that

logical context, which can be replaced by another logical equivalent formula. Then, you

can replace it and that is what we have been using throughout whatever we did in

Boolean algebra in hardware circuits. So, most of the things that we did except for you

know in the case of hardware, you have this carload map technique.

If you do not have, then do not care states then what you are doing is you are preserving

logical equivalence, but the introduction of do not care states creates a different

complication. You are you are no longer preserving equivalence, you are preserving

some kind of greater than or equal to relation, but you are not you are definitely naught

preserving equivalence. So, it is important to keep that in mind now and when you just

look at the operators of the logic.

(Refer Slide Time: 16:50)

 Let us look there are some other important identities, for example this bi conditional phi

by conditional xi is logically equivalent to phi arrow xi and xi arrow phi. This is

something that you can easily prove and phi arrow xi is logically equivalent to phi or xi

this is also something that most of you are familiar with. Now, what we are saying is that

in a certain sense these two logical constructs are redundant in a certain sense and I

would so given this omega is all those operators that by which we originally define

propositional logic top bottom not and or arrow.

By condition, all those operators, so take any set of operators which is the sub set of this

omega that is set to be adequate for propositional logic. If every formula in p naught,

there is a logically equivalent formula using only the operators in o. So, in these two

logical equivalences, essentially say that if from omega I remove these two operators the

by conditional and conditional, then what I have left is still an adequate set for

propositional logic. It is not necessary for me to have kept on adding more and more

operators in order to get whatever is the power of those six, those two constants and

those five operators. So, that is like seven operators those two constants can be regarded

as two 0 operators.

So, instead of the 7, the 7 the power of the 7 operators is the same as the power of the

set, without these two operators by conditional and the conditional, this is there. Another

concept that I am going to talk about and in a certain sense most books on logic do not

distinguish between adequacy and that concept which I call functional completeness, but

I am going to distinguish between them. So, this is adequacy, so all I am saying is my

propositional logic consist of the two constraints, bottom and top, a unary operatory

negation and the four binary operators and or conditional and by conditional.

When I look at adequacy of a set of operators, I am looking at it from the point of view

of the set. So, it is always related to this set omega and I am saying that, so set of

operators is adequate for propositional logic. If every statement in propositional logic,

which could be written using all the operators can also be written in a logically

equivalent form using this subset of operators.

(Refer Slide Time: 20:18)

So, from these identities five and six, what we essentially and a two simplification, we

get that this set o consisting of three operators is an adequate set of operators. By the

way, it is possible to also get rid of this bottom and top, we do not need them because of

the fact that I can choose because of the fact that instead of top.

(Refer Slide Time: 20:50)

I can choose any atomic proposition and top as p, let us say atomic proposition p and

right top as p or naught p and similarly, I can write bottom as p and naught p. For

example, even this bottom and top are actually not required, so this means that with this

three operators, I have an adequate set, which captures the expressive power of all of

propositional logic up to logical equivalence. Further of course, which we have seen in

hardware courses probably is that you can get rid of one of these two. The de Morgan’s

identity essentially says that can be replaced by not and or right and vice versa or can be

replaced.

Therefore, you just require this require negation and one of this one or to get an adequate

set and in fact what you have learnt in your hardware course is that it is not even

necessary to have this it is necessary to just have a single operator. Let us say that is

adequate for all propositional logic, similarly you can just use an, but let us leave with

this, since we are interested more in reasoning than in getting minimal hardware circuits.

We will keep at least these three operators, usually this three operators, there is another

there is another concept which I am going to define and that is called functional

completeness. So, you just take this think of it this way, you take supposing I define an

arbitrary ternary operator on Boolean algebra or on propositional logic and then I want to

know whether that ternary operator is somehow primitive. So, primitive in the sense that

is it possible to express things with which it is not possible to express with the other

operators that that I already have, for example this question for some reason most of is

never asked.

(Refer Slide Time: 24:26)

If you take the naturals or take the naturals the natural numbers, we usually define these

operations like addition subtraction multiplication coefficient remainder and essentially

we have done all our mathematics with that. However, we are aware that there are

functions from the naturals or naturals raise to some power k, there are k functions from

n raise to k to k. This may not be expressible in terms of this four or five operator

operators that we have got, I mean if there is the class of functions.

(Refer Slide Time: 24:41)

Even the class of unary functions from n to n is unaccountably large, we have just

limited ourselves to basically these binary operators let us say, but that is not mean that

there are not functions on the naturals. It does not mean that every function on the

naturals can be expressed up to equality only in terms of this; on the other hand Boolean

algebra is sort of specially constituted.

That special constitution is that the operators that we have got form of functionally

complete set; you take any arbitrary Boolean operator you define your own Boolean

operator. Let us say you define a Kerry Boolean operator from b raise to k to b, where b

is the set 0, 1 whatever may be the nature of that operator.

It can still be written entirely in terms of the of an of a of the of the set of operators that

we already have and that is the property of functional completeness. It is not true for n, it

is not true for r, for example in u, I am sorry min and max may not all be completely

defined, min is defined may be, but max is not defined always. For example, min will not

be definable in terms of these five operators any one, so there are and you conceive of

other operators which cannot be defined, but in the case of the in case of the Boolean

logic Boolean algebra. Therefore, propositional logic also every adequate set is also

functionally complete and the proof for that, actually once you see it, it is actually quite

easy what are we saying you take, so what we are saying is this.

(Refer Slide Time: 27:16)

This property would be true for the propositional logic if it is true for Boolean algebra, so

essentially the problem our semantics of propositional logic maps, this not to inversion

the Boolean inversion. The Boolean product and or to the Boolean sound right, so this

will be functionally complete if and only if the corresponding operation on Boolean on

Boolean algebra are functionally complete.

So, the problem reduces to proving that the corresponding operators in Boolean algebra

are functionally complete, so let us assume that little o is some arbitrary unary operator

on the set 0 1a, so that is it takes its unary operator which gives you a Boolean result. It

also gives you an element from the set its co domain is also 2 and set 0, 1, so what we are

saying is such an operator clearly has something like a truth table associated with it. So,

if you think of this operator applied to n arguments a 1, a n where each of a 1 to a n takes

values either 0 or 1, then there are essentially 2 raised to n different possible sequence

vectors of values that can be assigned.

This operator should give you a result, since this is the total function, it should give you a

0 or 1 result for each of those 2 raised to n possible vectors. So, that is this b lets say b 0

to b 2 raise to n minus 1, now that means in Boolean algebra partly because we are

talking about a 2 element set the finiteness of the set is important. In fact one of the

reasons why n raised n to n is you cannot get finite set of functionally complete. You

cannot get a finite functionally complete set of operators for n to n is because n is infinite

and the number of functions from n to n is unaccountably infinite.

Here, we are dealing with everything that is finite, so that means there is a table which

should tell you for each vector, what the result should be right and that vector is a

sufficient and complete vector complete definition of this operator o o n. If there is such

a vector, then what I have claimed is I claim that this truth table, this is just the truth

table for that operator. I claim that this truth table can only be can be expressed in terms

of just inversion dot and plus and how do I express it that way I just take, I think of this

truth table it has 2 raised to n rows.

I can think of this truth table as an big or of this 2 raised to n rows of the result of this 2

raised to n rows, each row I can think of it is a big and of the individual elements a 1 to a

n such that take any a i a j if it is 0 in that row make it a j bar because a j bar will be 1.

So, it is just a product of those, so I am calling it a j star, the star indicates that if a j in

that row is 1, then you keep one if a j in that row is 0, basically you are looking at a j bar.

So, I take this i take this a j stars this product of this a j stars that is one and i take this b i

for the i th row. Here, I decide whether I should give that value to be 1 or 0 based on the

value of that b i. So, I have this star at that top here, which will be determined whether it

is a inversion or not depending on the value of that b at that row.

(Refer Slide Time: 31:32)

So, I take the product of the individual components in each row and the sum over all the

rows and now that is just some of products. So, every operator has been compliantly

defined in a sum of products form. So, that shows, now reverting back that shows that

you take any adequate set of operator of propositional logic that set is also functionally

complete up to truth values.

(Refer Slide Time: 33:27)

The other thing the other important concept that we should look at is that we will think of

the principal duality. One of the nice things about your Boolean algebra is really that and

also therefore, propositional logic is that except for these notions like validity and so on.

So, for true and false, essentially from have other it is possible at least in Boolean

algebra. It is possible to think of 0 and 1 as having equal stratus, so it is possible to think

of every think of 0 and 1 has been duals of each other. So, we will say that two formulas

phi and xi, so we are looking at all this in the in the context not a logical validity, but in

the context of logical equivalence which is purely algebraic concept.

So, we are looking at the system of propositional logic under logical equivalence as a

simple algebraic system. So, then truth and falsehood are duals of each other and things

can be inverted, so the notion of dual is just this two formulas phi and xi are called duals

of each other. If each formula can be replaced, can be obtained from the other by

simultaneous replacement of this, so you replace all AND s by OR and all OR s by AND

s, all bottoms by tops and all tops by bottoms.

So, you take the formula phi and you get it phi dual which the tree structure of phi and

phi dual. In fact, even this sentential structure is otherwise the same except that all the

operators have been replaced by their duals. Now, essentially we this and suppose to

duals of each other bottoms and tops are also duals of each other right, but now what

happens is that the duality the two the two formulas are phi and its dual are not equal.

They do not even necessarily logically imply each other, but what does happen is that if I

take the inversions, so if I take the negations of the atoms in the dual.

(Refer Slide Time: 36:13)

Then, I would get the negation of the original formula is that, so the duality comes

through negation its sort of mirror reflection that negation does which gives you the

property of duality. It is possible to talk about duality, even when there is no negation,

for example you take any set take the power set of that set under the subset ordering the

structure.

 (Refer Slide Time: 37:02)

 If you want to draw under the subset ordering you will get, so you take a set s and you

have the empty set and you have basically various kinds of subsets in between this

structure can be inverted. So, this is let us say under the subset ordering, it can be

inverted and essentially under the superset ordering I will get in almost symmetrical

inversion which looks the same. So, the duality in this case is that every union will be

replaced by an intersection, here subset will be replaced by super set and every

intersection here will be replaced by union. I do not need to necessarily consider

inversions at all, for example I do not need to think of complement complements at all.

Even with just union and intersection, I get a duality, so if a set is defined as a union of

some other sets, I can think of another set defined as a intersection, but there is an

inversion which takes place. So, it is possible to define duality here, but under inversion

the duality becomes absolutely precise and exact and the equality becomes notable. So,

duality does hold for what I know as this is actually an example of complete latish, it

does hold for complete, latish is to once you put in inversions.

This becomes an Boolean algebra, so inversions come in naturally, but the point is

otherwise the principle of duality does hold for complete lattices which are not Boolean

algebra. There is there is certain symmetry in the structure which can be inverted and

that is what mean by duality. So, this principle of duality for proposition of logic is

essentially by you can prove it by structural induction and the use of de Morgan’s and

implication laws am I am not going to do that once you have logical equivalence.

(Refer Slide Time: 40:04)

Once you have functional completeness and adequacy, you know that logical

equivalence is a congruence relation. You are essentially ready to do things like what

you did in hardware there, what you did, you actually try to use car, no maps. For

example, to simplify circuits to get the least numb of elements, for example in order to

perform a certain function, then we are going to work the same way, but towards some

system of reasoning. So, the first thing that we will look at is the notion of a normal

form, normal forms also exist, also existed and in the case of your hard ware circuits,

your sum of products forms and product of sums forms were normal forms.

So, let us look at some kinds of normal forms, so I will take, so I will look at my atoms

and negations of atoms. So, I will atoms positive atoms and there negation, I will call

them negative, I will call them, so I will call the atoms positive literals and their negation

negative literals. Now, our formulae is essentially a sentence in propositional logic is in

negation normal form, if it is built up from literals using only the operators OR an AND.

So, this is why is it important to look at normal forms because then what you are looking

at is not the entire language, but an equivalent subset of the original language. So, this

way for example, you take a formulae in negation normal form, you are actually

removing all those sentences, where negation can appear outside and or and so on, you

are constraining the language to a smaller set.

(Refer Slide Time: 42:10)

 It is clear that every formulae in propositional logic is logically equivalent to a formulae

in negation normal form, what do I do? I just use de Morgan’s identity to push the

negation inside and bring them down to the leaves, there is one thing more, also I need to

use that, I need to use that negation law this one.

(Refer Slide Time: 42:22)

I will require using this sometimes to cancel out the negations though I have not

mentioned it here, so I will require that, but sorry essentially using de Morgan’s

identities, we can and we can take any. So, one thing is know that NOT and AND are an

adequate and functionally complete set, so we just consider formulas only using NOT

and AND, OR and where ever not occurs outside somewhere.

We push it and use in de Morgan’s laws and if double negations occur, we cancel them

out and this process will ensure that every formula is logically equivalent to 1 in negation

normal form. This means that it consists of the negation occurs only in front of an atom,

it does not occur outside, so it consists of positive and negative laterals. It is made up of

positive and negative literals using only the operators and AND, OR that is the next thing

we can do.

(Refer Slide Time: 43:38)

This is equivalent to your product of sums formed, which I am going to call conjunctive

normal form, conjunction and disjunction. So, I can take a disjunction literals, so I take

literals and I take an and of those disjoints and what do I get, I get a conjunctive normal

form, which is essentially what have learnt in hardware. It will come out as a product of

sums formed, so analogously we can define a conjunction of laterals and disjunction of

conjuncts. That would be what is known as a disjunctive normal form, which in your

hardware circuit, you came across as sum of products form, but we will call them CNF

and DNF conjunctive normal form and disjunctive normal form.

(Refer Slide Time: 44:45)

So, the next theorem is again very easy every formula in p naught is logically equivalent

to a form to a conjunctive normal form. Now, it is enough to assume that the formulae is

in negation normal form, so there are any way no negation signs all the negation signs

when they appear. They appear only in front of the atoms, there are no double negations

and the rest of the formulae the formula is just built up using AND s and OR s, all you

need to do is to distribute the OR s over the AND s in order to get a conjunctive normal

form. Similarly, if you distribute the AND s over the OR s, you get a formulae in

disjunctive normal form, but there is a price to be paid and what is the price to be paid?

Ultimately, we have to look at all these things as somehow being part of some

implementation in some theorem proving we have to design algorithms for them. So,

what is the price that you pay here, I mean it is not just pure mathematical theory, now

suppose you have to think of it in terms of what is the price that you are paying think of

algorithms and so on. So, the distributive laws create copies, so take this phi and xi or xi

phi and xi or phi and xi.

(Refer Slide Time: 46:32)

So, if you have a huge number of AND s and OR s and you are going to start

distribution, then you are going to keep creating multiple copies. In the worst case,

supposing you got your formulae in disjunctive normal form and you have to convert it

in to conjunctive normal form by this method. In the worst case, you will create two

copies of every sub formulae, which means you suddenly explored the formulae to an

exponential size by the time you have come down to the leaves. You think of it as a tree,

you have a tree, you have a huge tree, let us say in which you had disjunctions all over

the place up to some front here.

(Refer Slide Time: 47:27)

.

Then, you had conjunctions all over the place up to some front here and then of course

you had may be some negations scattered, but otherwise everything else is an atom. Let

us say now this is a disjunctive normal form, if you have to convert it to conjunctive

normal form, you will be distributing the OR over the AND, which means you will be

replicating nodes whole sub trees. So, you will get a greatly expanded sub tree, which in

the worst case can be exponential in size to the original tree. So, other use of distributive

laws is going to prove expensive in that sense, but theoretically of course you just use the

distributive laws to convert from one to another, but there is a there is a price to be paid

for it.

I may not be as bad as exponential because of the fact that it is not the entire tree that you

have. It is not the every sub tree is going to be replicated, but in the worst case that is

what that is the upper bound.

Usually, it will be much less, but that is that is one thing, so that is the price to be paid

very often in in obtaining a conjunctive normal form, because in obtaining a conjunctive

normal form whenever AND, OR occurs over a over AND, you will have to distribute it.

So, you will be replicating some sub trees in that abstract syntax tree, so next time what

we will do is, we will look at how to use these CNF s for the purpose of some kind of

verification validity proving some proving some arguments. So, we look at the design of

a tautology checker and the we will look at more algorithms that will be our first with

computer science, so I will stop here.

