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Lecture - 5 

Identities and Normal Forms 
 

Let us start lecture five, so before we do that I will like to quickly go through some of the 

stuff that we have already done in lecture four. 
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For example, some of the concepts, here are some let us quickly go through these logical 

validity does not belong to the language. So, you are asking if you are asking whether 

topologic can ever be logically invalid, the answer is it cannot be there. I mean if you 

look at this validity, for example the validity symbol is black in color, it is metallurgical 

symbol. It is a symbol of the mathematics of the mathematical logic and not and is not a 

symbol of the language of propositional logic.  

So, whatever is symbol of language of propositional logic would be green in color like 

this phi is green in color, though I am not sure whether you can actually see it, see the 

see the color differences. So, this we defined the notion of logical consequence, so we 

just say that a proposition phi is a logical consequence of some set of propositions 

gamma, where this set of this set of proposition gamma is a, it could be finite or infinite 

in general. 



Let us say we will think of it as being finite, so basically if any truth assignment that 

satisfies all the formulas of gamma also satisfies phi, then you would say that phi is the 

logical consequence of gamma. When the set gamma is empty, we just call it logical 

validity, so essentially what you are saying is that the truth of phi does not depend upon 

on the any other the truth of any other assumptions. For example, that denotes logical 

validity and of course if you just strike through that symbol, then it denotes in validity or 

that something is logically in valid or it s not a logical consequence of some of a set of 

formulae. 
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This is logically in valid does not mean contradiction every contradiction is logically 

invalid that is true, but even every contingent we have is also logically invalid. A 

contingent proposition is one for which there is at least one truth assignment for which it 

will be true. There is at least truth assignment for which it will be false, so that is 

logically valid simply because there exists a truth assignment in which all the 

assumptions are true. They are not assumptions, so that is that revile holds and the 

conclusion is false. 

So, that is any contingent or contradiction is logically invalid, so we have this notion of 

logical, so we have various these are actually theories of these are thermos of the theory 

of logic. Essentially, what these theorems tell us is that there is a translation of many of 

the metrological concept in to concepts in the language itself. So, in particular if gamma 



is a finite set, then size any formulae then size a logical consequence of gamma and only 

if you can form this huge formulae and prove that if it is a tautology, then size trivially a 

logical consequence of gamma. So, that shows that many of the reasoning concepts that 

we use can also be expressed with in the language of logic itself in some other terms. 
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So, the proof for this as I said will have to be done through the semantics of by using the 

semantics of propositional logic and please go through this proof, I will not go through it, 

now then there are other theorems. 
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For example, here if again gamma is a finite set and then size a logical consequence of 

gamma if and only if this entire sequence of conditionals is a valid formulae, which is the 

same as saying that this huge formula should be a tautology. Similarly, here is the next 

one, where we construct this entire formula and negate the conclusion and put a 

conjunction of all of that. That should be a contradiction, this entire formula should be a 

contradiction, and then we would say that size a logical consequence of gamma. So, one 

thing is of course a formula is a phi tautology if and only if the negation of phi is a 

contradiction. 
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Then, we had the notion of logical implication, now just like logical consequence logical 

implication is also a concept of the theory of logic rather than something with in logic 

itself. So, it is not within the language of logic it only relates two formulae, so we would 

say that phi logically implies xi if and only if phi arrowed xi. Now, this is a single 

formula, these are two formulas related by this relation, where this is a single formula in 

the language phi arrowed xi and we are saying that should be logically valid. In other 

words means that it has to be a tautology, so logical implication also can be brought 

down to the conditional. 

Similarly, there is logical equivalent, normally the word the term tautology is employed 

only for those forms which come from propositional tautology in any higher order in any 

other logic like first order logic. So, we are talking about propositional forms, so as I said 



p or naught p is the tautology in in fact phi or naught phi is also a tautology for any 

formula phi even in any first order logic or any other logic. This is the form that you 

have and a positive and its negation on the two sides of or that form. 

That shape of formula is a tautological form, so the phi in those logics can be some other 

formula within that logic, but any logic in which propositional logic is some sub set all 

the tautological forms will be called tautologies. In addition, there could have logically 

valid formulas which do not satisfy propositional tautological forms. So, that is where 

the difference is going to come, you can think of a think of it as a structure, in which you 

can plug in things. 
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So, the phi or naught phi you can think of it as you can think of it as this structure and in 

any logic and you can think of this structure as a tautological form. If it takes in some 

parameter in any logic, it takes in only a single parameter not 2, not 2 or more 

parameters, but think of it as a single parameter form in which you can put copies of this 

anywhere. Then, this is always going to be a tautology, it does not matter whether you 

whether it is propositional logic or first order logic or some model logics or any other 

kinds of logics in which extension of propositional logic. 

On the other hand, when you other operators in other logics they might have logically 

valid forms which do not have this propositional structure, I mean which are not entirely 

up of propositional operators. For example, they could, but they are not called 



tautologies, there only called valid forms, not necessarily the notion of reduction is also 

something that needs to be formulized. So, we cannot we cannot use that terms blindly if 

what you are saying is that all tautological forms, all tautologies are logically equivalent 

to each other. 

That is fine because you are saying that that is semantic statement reduction has to do is 

a proof theoretic statement. It is not a semantic statement, so this is what we had was 

logical implication and its and we had you have logical equivalence also, which we did 

and last time I think we made sure that, logically equivalence is the carnal of logical 

implication. 
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So, you take the intersection of implication and its converse and that common set is the 

set of all is the equivalence relation on rho naught on p naught. The other thing we show 

we did last time was that we showed that logical equivalence is the congruence which 

boils down to in any algebraic system to show some congruence. It boils down to 

showing that equals those the congruent elements are replaced, replaceable by congruent 

elements in any context and usually that boils down. 



(Refer Slide Time: 12:00) 

 

These facts that the particular case of this language, means that it is showing that it is 

preserved under negations. So, we would say that relation is being preserved under 

negation and similarly, we will say that this equivalence relation has to be preserved 

under these operations. So, these are all up binary operations, so what it means is that 

you take any formula, what you are saying is that and you take any of these binary 

operators. So, I am using star to denote any of them and you are saying phi star should be 

logically equivalent to size, if i is logically equivalent to xi and similarly this is like 

taking a frame work and plugging replacing phi which is there in it. 

If it is not in any way perturbed by that, then you would say that is a congruence relation, 

so most of our theories of numbers. For example, real numbers the notion of equality is a 

congruence relation, so in fact all your addition, subtraction, multiplication, they are all 

they all preserve equality on numbers in theory of sets. For example, set equality is also a 

congruence relation, on the other hand in the in the theory of finite sets, I could define an 

equivalence relation, which says that a set a is equivalent to set b. They both have the 

number of elements, they need not be the same elements, and they have the same number 

of elements. 

So, finite sets, then this equivalence relation is not a congruence because I can take two 

sets a and a prime, which are equivalent in terms of cardinality, but a union b for 

arbitrary be may not be same as a prime union b. For example, that equivalence relation 



is not a congruence relation, so you have to for any equivalence relation is necessary to 

determine whether it is preserved under the operators. That are of interest to you, so 

logical equivalence is the congruence and that brings us to essentially defining these 

identities. 
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So, for example, these identities actually most of them directly come from the equilateral 

relation on Boolean algebras. 
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So, what the equilateral relation on Boolean algebra is the typical example of congruence 

and these identities are essentially linguistic versions of those Boolean identities. So, you 

can see that, so for example for any five and bottom five or bottom is going to be equal 

to 5. Then, there are the usual things distributive laws or distribute, so where and 

distribute, so what or there are de Morgan’s laws not of or is the not gets distributed or 

gets replacement. Similarly, then there are these things like simplification and inversion 

and there is this negation law, for example double negation cancels both of them. 

So, what this means now is that in any logical context if you see a sub term of that 

logical context, which can be replaced by another logical equivalent formula. Then, you 

can replace it and that is what we have been using throughout whatever we did in 

Boolean algebra in hardware circuits. So, most of the things that we did except for you 

know in the case of hardware, you have this carload map technique. 

If you do not have, then do not care states then what you are doing is you are preserving 

logical equivalence, but the introduction of do not care states creates a different 

complication. You are you are no longer preserving equivalence, you are preserving 

some kind of greater than or equal to relation, but you are not you are definitely naught 

preserving equivalence. So, it is important to keep that in mind now and when you just 

look at the operators of the logic. 
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 Let us look there are some other important identities, for example this bi conditional phi 

by conditional xi is logically equivalent to phi arrow xi and xi arrow phi. This is 

something that you can easily prove and phi arrow xi is logically equivalent to phi or xi 

this is also something that most of you are familiar with. Now, what we are saying is that 

in a certain sense these two logical constructs are redundant in a certain sense and I 

would so given this omega is all those operators that by which we originally define 

propositional logic top bottom not and or arrow. 

By condition, all those operators, so take any set of operators which is the sub set of this 

omega that is set to be adequate for propositional logic. If every formula in p naught, 

there is a logically equivalent formula using only the operators in o. So, in these two 

logical equivalences, essentially say that if from omega I remove these two operators the 

by conditional and conditional, then what I have left is still an adequate set for 

propositional logic. It is not necessary for me to have kept on adding more and more 

operators in order to get whatever is the power of those six, those two constants and 

those five operators. So, that is like seven operators those two constants can be regarded 

as two 0 operators. 

So, instead of the 7, the 7 the power of the 7 operators is the same as the power of the 

set, without these two operators by conditional and the conditional, this is there. Another 

concept that I am going to talk about and in a certain sense most books on logic do not 

distinguish between adequacy and that concept which I call functional completeness, but 

I am going to distinguish between them. So, this is adequacy, so all I am saying is my 

propositional logic consist of the two constraints, bottom and top, a unary operatory 

negation and the four binary operators and or conditional and by conditional. 

When I look at adequacy of a set of operators, I am looking at it from the point of view 

of the set. So, it is always related to this set omega and I am saying that, so set of 

operators is adequate for propositional logic. If every statement in propositional logic, 

which could be written using all the operators can also be written in a logically 

equivalent form using this subset of operators. 
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So, from these identities five and six, what we essentially and a two simplification, we 

get that this set o consisting of three operators is an adequate set of operators. By the 

way, it is possible to also get rid of this bottom and top, we do not need them because of 

the fact that I can choose because of the fact that instead of top. 
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I can choose any atomic proposition and top as p, let us say atomic proposition p and 

right top as p or naught p and similarly, I can write bottom as p and naught p. For 

example, even this bottom and top are actually not required, so this means that with this 



three operators, I have an adequate set, which captures the expressive power of all of 

propositional logic up to logical equivalence. Further of course, which we have seen in 

hardware courses probably is that you can get rid of one of these two. The de Morgan’s 

identity essentially says that can be replaced by not and or right and vice versa or can be 

replaced. 

Therefore, you just require this require negation and one of this one or to get an adequate 

set and in fact what you have learnt in your hardware course is that it is not even 

necessary to have this it is necessary to just have a single operator. Let us say that is 

adequate for all propositional logic, similarly you can just use an, but let us leave with 

this, since we are interested more in reasoning than in getting minimal hardware circuits. 

We will keep at least these three operators, usually this three operators, there is another 

there is another concept which I am going to define and that is called functional 

completeness. So, you just take this think of it this way, you take supposing I define an 

arbitrary ternary operator on Boolean algebra or on propositional logic and then I want to 

know whether that ternary operator is somehow primitive. So, primitive in the sense that 

is it possible to express things with which it is not possible to express with the other 

operators that that I already have, for example this question for some reason most of is 

never asked. 

(Refer Slide Time: 24:26) 

 



If you take the naturals or take the naturals the natural numbers, we usually define these 

operations like addition subtraction multiplication coefficient remainder and essentially 

we have done all our mathematics with that. However, we are aware that there are 

functions from the naturals or naturals raise to some power k, there are k functions from 

n raise to k to k. This may not be expressible in terms of this four or five operator 

operators that we have got, I mean if there is the class of functions. 
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Even the class of unary functions from n to n is unaccountably large, we have just 

limited ourselves to basically these binary operators let us say, but that is not mean that 

there are not functions on the naturals. It does not mean that every function on the 

naturals can be expressed up to equality only in terms of this; on the other hand Boolean 

algebra is sort of specially constituted. 

That special constitution is that the operators that we have got form of functionally 

complete set; you take any arbitrary Boolean operator you define your own Boolean 

operator. Let us say you define a Kerry Boolean operator from b raise to k to b, where b 

is the set 0, 1 whatever may be the nature of that operator. 

It can still be written entirely in terms of the of an of a of the of the set of operators that 

we already have and that is the property of functional completeness. It is not true for n, it 

is not true for r, for example in u, I am sorry min and max may not all be completely 

defined, min is defined may be, but max is not defined always. For example, min will not 



be definable in terms of these five operators any one, so there are and you conceive of 

other operators which cannot be defined, but in the case of the in case of the Boolean 

logic Boolean algebra. Therefore, propositional logic also every adequate set is also 

functionally complete and the proof for that, actually once you see it, it is actually quite 

easy what are we saying you take, so what we are saying is this. 
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This property would be true for the propositional logic if it is true for Boolean algebra, so 

essentially the problem our semantics of propositional logic maps, this not to inversion 

the Boolean inversion. The Boolean product and or to the Boolean sound right, so this 

will be functionally complete if and only if the corresponding operation on Boolean on 

Boolean algebra are functionally complete. 

So, the problem reduces to proving that the corresponding operators in Boolean algebra 

are functionally complete, so let us assume that little o is some arbitrary unary operator 

on the set 0 1a, so that is it takes its unary operator which gives you a Boolean result. It 

also gives you an element from the set its co domain is also 2 and set 0, 1, so what we are 

saying is such an operator clearly has something like a truth table associated with it. So, 

if you think of this operator applied to n arguments a 1, a n where each of a 1 to a n takes 

values either 0 or 1, then there are essentially 2 raised to n different possible sequence 

vectors of values that can be assigned. 



This operator should give you a result, since this is the total function, it should give you a 

0 or 1 result for each of those 2 raised to n possible vectors. So, that is this b lets say b 0 

to b 2 raise to n minus 1, now that means in Boolean algebra partly because we are 

talking about a 2 element set the finiteness of the set is important. In fact one of the 

reasons why n raised n to n is you cannot get finite set of functionally complete. You 

cannot get a finite functionally complete set of operators for n to n is because n is infinite 

and the number of functions from n to n is unaccountably infinite. 

Here, we are dealing with everything that is finite, so that means there is a table which 

should tell you for each vector, what the result should be right and that vector is a 

sufficient and complete vector complete definition of this operator o o n. If there is such 

a vector, then what I have claimed is I claim that this truth table, this is just the truth 

table for that operator. I claim that this truth table can only be can be expressed in terms 

of just inversion dot and plus and how do I express it that way I just take, I think of this 

truth table it has 2 raised to n rows. 

I can think of this truth table as an big or of this 2 raised to n rows of the result of this 2 

raised to n rows, each row I can think of it is a big and of the individual elements a 1 to a 

n such that take any a i a j if it is 0 in that row make it a j bar because a j bar will be 1. 

So, it is just a product of those, so I am calling it a j star, the star indicates that if a j in 

that row is 1, then you keep one if a j in that row is 0, basically you are looking at a j bar. 

So, I take this i take this a j stars this product of this a j stars that is one and i take this b i 

for the i th row. Here, I decide whether I should give that value to be 1 or 0 based on the 

value of that b i. So, I have this star at that top here, which will be determined whether it 

is a inversion or not depending on the value of that b at that row. 
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So, I take the product of the individual components in each row and the sum over all the 

rows and now that is just some of products. So, every operator has been compliantly 

defined in a sum of products form. So, that shows, now reverting back that shows that 

you take any adequate set of operator of propositional logic that set is also functionally 

complete up to truth values.  
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The other thing the other important concept that we should look at is that we will think of 

the principal duality. One of the nice things about your Boolean algebra is really that and 



also therefore, propositional logic is that except for these notions like validity and so on. 

So, for true and false, essentially from have other it is possible at least in Boolean 

algebra. It is possible to think of 0 and 1 as having equal stratus, so it is possible to think 

of every think of 0 and 1 has been duals of each other. So, we will say that two formulas 

phi and xi, so we are looking at all this in the in the context not a logical validity, but in 

the context of logical equivalence which is purely algebraic concept. 

So, we are looking at the system of propositional logic under logical equivalence as a 

simple algebraic system. So, then truth and falsehood are duals of each other and things 

can be inverted, so the notion of dual is just this two formulas phi and xi are called duals 

of each other. If each formula can be replaced, can be obtained from the other by 

simultaneous replacement of this, so you replace all AND s by OR and all OR s by AND 

s, all bottoms by tops and all tops by bottoms. 

So, you take the formula phi and you get it phi dual which the tree structure of phi and 

phi dual. In fact, even this sentential structure is otherwise the same except that all the 

operators have been replaced by their duals. Now, essentially we this and suppose to 

duals of each other bottoms and tops are also duals of each other right, but now what 

happens is that the duality the two the two formulas are phi and its dual are not equal. 

They do not even necessarily logically imply each other, but what does happen is that if I 

take the inversions, so if I take the negations of the atoms in the dual. 
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Then, I would get the negation of the original formula is that, so the duality comes 

through negation its sort of mirror reflection that negation does which gives you the 

property of duality. It is possible to talk about duality, even when there is no negation, 

for example you take any set take the power set of that set under the subset ordering the 

structure. 
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 If you want to draw under the subset ordering you will get, so you take a set s and you 

have the empty set and you have basically various kinds of subsets in between this 

structure can be inverted. So, this is let us say under the subset ordering, it can be 

inverted and essentially under the superset ordering I will get in almost symmetrical 

inversion which looks the same. So, the duality in this case is that every union will be 

replaced by an intersection, here subset will be replaced by super set and every 

intersection here will be replaced by union. I do not need to necessarily consider 

inversions at all, for example I do not need to think of complement complements at all. 

Even with just union and intersection, I get a duality, so if a set is defined as a union of 

some other sets, I can think of another set defined as a intersection, but there is an 

inversion which takes place. So, it is possible to define duality here, but under inversion 

the duality becomes absolutely precise and exact and the equality becomes notable. So, 

duality does hold for what I know as this is actually an example of complete latish, it 

does hold for complete, latish is to once you put in inversions. 



This becomes an Boolean algebra, so inversions come in naturally, but the point is 

otherwise the principle of duality does hold for complete lattices which are not Boolean 

algebra. There is there is certain symmetry in the structure which can be inverted and 

that is what mean by duality. So, this principle of duality for proposition of logic is 

essentially by you can prove it by structural induction and the use of de Morgan’s and 

implication laws am I am not going to do that once you have logical equivalence. 
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Once you have functional completeness and adequacy, you know that logical 

equivalence is a congruence relation. You are essentially ready to do things like what 

you did in hardware there, what you did, you actually try to use car, no maps. For 

example, to simplify circuits to get the least numb of elements, for example in order to 

perform a certain function, then we are going to work the same way, but towards some 

system of reasoning. So, the first thing that we will look at is the notion of a normal 

form, normal forms also exist, also existed and in the case of your hard ware circuits, 

your sum of products forms and product of sums forms were normal forms. 

So, let us look at some kinds of normal forms, so I will take, so I will look at my atoms 

and negations of atoms. So, I will atoms positive atoms and there negation, I will call 

them negative, I will call them, so I will call the atoms positive literals and their negation 

negative literals. Now, our formulae is essentially a sentence in propositional logic is in 

negation normal form, if it is built up from literals using only the operators OR an AND. 



So, this is why is it important to look at normal forms because then what you are looking 

at is not the entire language, but an equivalent subset of the original language. So, this 

way for example, you take a formulae in negation normal form, you are actually 

removing all those sentences, where negation can appear outside and or and so on, you 

are constraining the language to a smaller set. 
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 It is clear that every formulae in propositional logic is logically equivalent to a formulae 

in negation normal form, what do I do? I just use de Morgan’s identity to push the 

negation inside and bring them down to the leaves, there is one thing more, also I need to 

use that, I need to use that negation law this one. 
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I will require using this sometimes to cancel out the negations though I have not 

mentioned it here, so I will require that, but sorry essentially using de Morgan’s 

identities, we can and we can take any. So, one thing is know that NOT and AND are an 

adequate and functionally complete set, so we just consider formulas only using NOT 

and AND, OR and where ever not occurs outside somewhere. 

We push it and use in de Morgan’s laws and if double negations occur, we cancel them 

out and this process will ensure that every formula is logically equivalent to 1 in negation 

normal form. This means that it consists of the negation occurs only in front of an atom, 

it does not occur outside, so it consists of positive and negative laterals. It is made up of 

positive and negative literals using only the operators and AND, OR that is the next thing 

we can do. 



(Refer Slide Time: 43:38) 

 

This is equivalent to your product of sums formed, which I am going to call conjunctive 

normal form, conjunction and disjunction. So, I can take a disjunction literals, so I take 

literals and I take an and of those disjoints and what do I get, I get a conjunctive normal 

form, which is essentially what have learnt in hardware. It will come out as a product of 

sums formed, so analogously we can define a conjunction of laterals and disjunction of 

conjuncts. That would be what is known as a disjunctive normal form, which in your 

hardware circuit, you came across as sum of products form, but we will call them CNF 

and DNF conjunctive normal form and disjunctive normal form. 
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So, the next theorem is again very easy every formula in p naught is logically equivalent 

to a form to a conjunctive normal form. Now, it is enough to assume that the formulae is 

in negation normal form, so there are any way no negation signs all the negation signs 

when they appear. They appear only in front of the atoms, there are no double negations 

and the rest of the formulae the formula is just built up using AND s and OR s, all you 

need to do is to distribute the OR s over the AND s in order to get a conjunctive normal 

form. Similarly, if you distribute the AND s over the OR s, you get a formulae in 

disjunctive normal form, but there is a price to be paid and what is the price to be paid? 

Ultimately, we have to look at all these things as somehow being part of some 

implementation in some theorem proving we have to design algorithms for them. So, 

what is the price that you pay here, I mean it is not just pure mathematical theory, now 

suppose you have to think of it in terms of what is the price that you are paying think of 

algorithms and so on. So, the distributive laws create copies, so take this phi and xi or xi 

phi and xi or phi and xi. 
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So, if you have a huge number of AND s and OR s and you are going to start 

distribution, then you are going to keep creating multiple copies. In the worst case, 

supposing you got your formulae in disjunctive normal form and you have to convert it 

in to conjunctive normal form by this method. In the worst case, you will create two 

copies of every sub formulae, which means you suddenly explored the formulae to an 



exponential size by the time you have come down to the leaves. You think of it as a tree, 

you have a tree, you have a huge tree, let us say in which you had disjunctions all over 

the place up to some front here. 
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Then, you had conjunctions all over the place up to some front here and then of course 

you had may be some negations scattered, but otherwise everything else is an atom. Let 

us say now this is a disjunctive normal form, if you have to convert it to conjunctive 

normal form, you will be distributing the OR over the AND, which means you will be 

replicating nodes whole sub trees. So, you will get a greatly expanded sub tree, which in 

the worst case can be exponential in size to the original tree. So, other use of distributive 

laws is going to prove expensive in that sense, but theoretically of course you just use the 

distributive laws to convert from one to another, but there is a there is a price to be paid 

for it. 

I may not be as bad as exponential because of the fact that it is not the entire tree that you 

have. It is not the every sub tree is going to be replicated, but in the worst case that is 

what that is the upper bound. 

Usually, it will be much less, but that is that is one thing, so that is the price to be paid 

very often in in obtaining a conjunctive normal form, because in obtaining a conjunctive 

normal form whenever AND, OR occurs over a over AND, you will have to distribute it. 

So, you will be replicating some sub trees in that abstract syntax tree, so next time what 



we will do is, we will look at how to use these CNF s for the purpose of some kind of 

verification validity proving some proving some arguments. So, we look at the design of 

a tautology checker and the we will look at more algorithms that will be our first with 

computer science, so I will stop here. 


