
Logic for CS 
Prof. Dr. S. Arun Kumar 

Department of Computer Science 
Indian Institute of Technology, Delhi 

 
Lecture - 39 
References 

  

(Refer Slide Time: 00:43) 

 

So, welcome to the last lecture, on logic for computer science. So, we have let us recapitulate, 

what all we have done? Well there was introduction in which we actually looked at the notions 

of what is logic the notion of validity of arguments we made it clear that logic is concerned only 

about the form of reasoning.  



(Refer Slide Time: 00:56) 

 

And, not really about the content and then we also spoke about Reasoning Truth and Validity. 

And, we showed how in we have gone through many examples where there were fallacious 

proofs and we have shown how you can sometimes derive false conclusions from true premises. 

And, on the other hand we can always even with Sound reasoning principles we can produce 

false conclusions from false premises. So, that is so in that sense logic really has to do with only 

finding logical consequence of logical consequences of premises that we as our assumptions and 

or our hypothesis. So, we speak and it is not really concerned with the actual truth of statements 

that one make about a any structure or about the universe or world in general. So, and in 

particular we focused on first-order logic by starting from propositional logic the proposition 

connectives propositional logic or also sentential logic.  



(Refer Slide Time: 02:08) 

 

(Refer Slide Time: 02:12) 

 

We define the notion of Truth and falsehood we so in that sense it is a mathematical it is a 

mathematical approached logic. Where, we essentially studied a, logic also as a branch of 

mathematics rather than really as what was originally intended namely that logic should have 

been the foundation of mathematics.  



(Refer Slide Time: 02:40) 

 

So, instead we just treated it as a branch of mathematics and then we tried it with Boolean 

algebra. And, we went through all these the propositional logic syntax the usual propositional 

connectives. And, then we also showed that there was some I mean so, this is this is also an 

algebraic treatment of logic derived from Boolean algebra. Essentially, propositional logic and 

we spoke about identities normal forms.  

(Refer Slide Time: 03:17) 

 



Then, we also gave an algorithm for checking tautologies. And, we used this tautology checking 

also to Validate or Falsify arguments. And, we showed that there were several techniques could 

use truth tables you could use various other logical consequence mechanisms we could also in. 

But, we could also use proof theoretic mechanisms and which is what we did in our Hilbert style 

proof system.  

(Refer Slide Time: 03:45) 

 

(Refer Slide Time: 03:54) 

 



And, from the Hilbert style proof system we came up with the notion of formal theories. 

Especially the Monotonicity property the Compactness property Substitutivities soundness of a 

Formal Theory these are all axioms of the subset of the language we gave a set of inference rules 

of these various forms we spoke about axiomatic theories and decidability.  

(Refer Slide Time: 04:09) 

 

And, we actually went through this Rule Patterns and which are which as you can see a 

completely syntactic. And, therefore they are not really concerned about underlying content of 

the sentences about which we are reasoning. Then, we also showed so it is an important 

properties about formal theories and about the Hilbert style proof system. We, showed for 

convenience we could derive a large number of new rules we could use them.  



(Refer Slide Time: 04:38) 

 

We, could essentially plug in the proofs and therefore the substitutivity of rules and we showed 

convenient way of introducing assumptions and discharging assumptions through the deduction 

theorem which, was and its and its converse so we showed that we could move between 

conclusions between proof conclusions and assumptions that, we make.  

(Refer Slide Time: 05:00) 

 



And, which is in fact the deduction theorem actually tells us something about the normal 

reasoning practices that, we normally have that we normally employee when dealing with proofs 

in mathematics.  

(Refer Slide Time: 05:39) 

 

And, moving from the Hilbert style proof system we have we have also showed it soundness and 

completeness. We, moved on to those Soundness of the Hilbert style System we showed that 

every instance of every axiom in the Hilbert style in the system H naught which, is the Hilbert 

style proof system for propositional logic is a tautology. And, the modus ponens rule preserves 

tautologousness in particular it is also preserves tautologousness. And, therefore the notion of 

deriving conclusions of fresh facts from a set of assumptions which are held to be true uses a 

modus ponens rule.  



(Refer Slide Time: 06:25) 

 

And, we showed that this system is also complete in the sense that every tautology in 

propositional logic.  

(Refer Slide Time: 06:29) 

 

The Completeness I am just say is that every tautology can be derived as a formal theorem of the 

Hilbert style proof system.  



(Refer Slide Time: 06:47) 

 

And, in particular what we did was its relationship to this to the semantics of propositional logic 

which, is our language was by this actually simulating the Truth Table and we what we showed 

is that by this lemma. Is, that every Truth Table can actually we have simulated as a logical proof 

in the Hilbert style system going on from the Hilbert style proof system.  

(Refer Slide Time: 07:12) 

 



We, have also looked at Analytic Tabular which gave a convenient analytic tabular and 

resolution method which, gave convenient methods of actually proof which can be automated 

and the tabular.  

(Refer Slide Time: 07:23) 

 

And, Genson natural deduction system share this common feature that day actually breakup the 

formula into essentially sub formulae depending upon the kind of operators and the root. So, in 

that sense in propositional logic the tabulo rule are such that every tabulo would actually be 

finite. And, we showed that the tabulo was the tabulo system was also complete moreover by 

being structurally inductive by the rules being structurally inductive. We, also showed that it is 

possible to automate this for a propositional theorem prover. So, we could do tautology checking 

validity checking and so on. And, all those problems for propositional logic I actually decidable 

algorithmically decidable. So, we showed how the tabulo rules can be used to come up with 

tabulo proofs, we showed the consistency, we showed how unsatisfiabilty can be proven through 

closed tabulos we also had a the notion of Hintika sets.  



(Refer Slide Time: 08:42) 

 

And, we showed using hintika sets that tabulo method is also complete we also and then we had 

the compactness theorem which, showed that in order to prove unsatisfiability of infinite sets it is 

sufficient to find a finite subset which is unsatisfiable. So, these were this is a property of this is 

what is known as a property of finite character which, the compactness gives us and which 

unsatisfiability also satisfies. Then, moving on to first-order logic, we actually defined this we 

went through essentially the same processes. But, now it is more complicated because the 

underlying model of truth table which is finite which does not hold any more I mean. And, we 

are looking at essentially modeling structures expressed mostly algebraically. And, we are 

looking at using syntactical methods to prove facts about complicated algebraic structures given 

their and classes of structures which share a common signature. So, the notion of signature the 

notion of substitution and therefore an extension of the Hilbert style proof system for first-order 

logic. Before that, the semantics of the first-order logic therefore gets considerably the syntax 

and semantics of first-order logic become considerably more complex you can see that.  



(Refer Slide Time: 10:19) 

 

(Refer Slide Time: 10:29) 

 

We, had to define a separate set of symbols countably infinite collection of variable symbols 

function symbols. Then, notion of a, signature the term and actually the sort of each element 

signature which is given by a sort S by sort symbol S. And, which you can think of loosely 

speaking as, being related to the notion of types in programming languages. So, essentially a 

single sorted signature is or a 1-sorted signature is what we consider throughout. And, it refer to 

basically a simple algebraic system consisting of a single set. And, all elements essentially 



belong to purportedly or putatively belong to this set. And, this set might be and since we are 

looking at classes of structures we did not specify this set explicitly. But, instead just uses 

syntactic symbol called S for a sort. So, then as we saw the semantics of this semantics of 

predicate logic therefore also gets considerably more complex.  

(Refer Slide Time: 11:39) 

 

(Refer Slide Time: 11:47) 

 



Since, we have to deal with Structures which satisfies certain signature properties. And, 

essentially first-order logic deals with properties of structures actually it turns out that it deals 

with properties of classes of structure which share common signatures. So, in that sense first-

order logic is a parameterized over the signature. And, we are essentially looking at the axiom of 

such structures.  

(Refer Slide Time: 12:01) 

 

(Refer Slide Time: 12:14) 

 



So, we had various examples we also showed so we had the notion of interpretation of the 

symbols of the first-order language over a signature sigma. We, needed then notion of 

valuations. And, there from there we actually defined the notion of truth of a formula with free 

variables. So, where the truth might depend the truth of the formula might depend on the values 

assigned to the free variables. And, so therefore in addition to the interpretation you also required 

the valuation.  

(Refer Slide Time: 12:40) 

 

(Refer Slide Time: 12:47) 

 



So, we had a formal semantics for the Evaluation of Terms firstly and then we gave a 

coincidence lemma which essentially since variables are in infinite set. We, had to show that we 

had this coincidence lemma which, essentially said that under two different interpretations or 

under two different valuations if the variables mentioned in a term of the same. And, the 

valuations for all those variables that finite set of variables is the same in both valuations. Then, 

on the values of the terms would also be there values of the terms in the two valuations would be 

same. So, we had the notion of variance and then we gave this semantics of first-order formulae 

in particular that of the two quantifiers which, are which these quantifiers is actually 

parameterized on a variable the notion. Therefore, that we brought the notion of bound variables 

and then free and free variables and substitutions. We, also showed that you can have a 

coincidence lemma for formulae you can replace valuation variants by substitutions. And, then 

what we did was we use we used this notions of we use the same notions. We, extended the 

notions that we had for propositional logic to first-order logic we define the notions of models 

and satisfiability and validity based on structures and substructures. And, then we extended the 

Hilbert proof system to first-order logic for example.  

(Refer Slide Time: 14:21) 

 

So, we had these extra rules essentially dealing with quantifiers we also had an peculiar we also 

had derived rules in this case. But, you could for example we had these in addition to the derived 



rules we had we also had the notion of equality for which we gave some axioms. But, more 

importantly we showed that the rules for a existential quantification for example.  

(Refer Slide Time: 15:00) 

 

The Existential Elimination rule the corresponding derived rules are not is not the existential 

introduction is a derived rule however existential elimination is not a derived rule.  

(Refer Slide Time: 15:17) 

 



However, what we manage to show is that you can every proof by existential elimination which 

uses the existential elimination rule can also be transformed into a proof which, does not employ 

the existential elimination rule. In, this process we also required and reduction theorem we 

showed that there are restrictions on the application of the deduction theorem. So, essentially the 

deduction theorem applies mainly for sentences. So, the quantification over free variables and 

therefore generalizing from free variables or instantiating free variables is a certain issue. And, 

one has to be careful about generalizing on for example existential variables by universal 

quantifier. So, that further we general we have also the proof procedure the other proof 

procedures for propositional logic were extended to resolution for example and tabulos. 

So, we did both we also showed that are Hilbert style proof system was sound and complete the 

tabulo method was sound and complete again we extended the notion of hintika sets first-order 

tabulo and hintika sets. And, we showed that is a both sound and complete and we proved the 

soundness and completeness of the Hilbert style proof system. We, also proved the soundness 

and completeness of resolution. What, we showed in particular was that resolution was refutation 

complete. So, which means it is not necessarily clear that you might be able to derive all logical 

consequences but what is necessary what is true definitely is that your you can always refuse the 

negation of a logical consequence. And, prove it so in that sense resolution was refutation 

complete.  

(Refer Slide Time: 17:21) 

 



So, this is what this is what we so therefore this gives us directly methods for automating the 

notion of theorem proving a automating the notion of proof. Even from first-order logic either 

through resolution or through tabulo a, the Hilbert style system does not necessarily permit itself 

to be automated. So, easily on the other hand resolution and tabulo is due and with that we have 

essentially. We, showed some these we also gave some applications of these first-order theories 

first of course is that logic programming is essentially something that is based on resolution. A, 

particular implementation of logic programming is prolog. But a and we looked at some prolog 

code 2 there some prolog code that here for example. And, we showed and there are however 

there are certain pragmatic reason by prolog is really different from logic programming. First, of 

all prolog does not it treats negation as a failure of proof rather than negation is an operator.  

(Refer Slide Time: 18:38) 

 

So, that is one thing and more over prolog the all prolog implementations which follow what is 

known as a war and abstract machine model actually tend to unsound because of certain 

problems substitutions and unification most general unifiers. Then, we looked at other 

applications for example. We, also looked at the verification of imperative programs the notion 

of a predicate as notion of a programming language or programming construct as a not just as a 

state transformer but as a, but as a predicate transformer.  



(Refer Slide Time: 19:24) 

 

And, that is what we looked at so this is like generalizing the notion of meaning from single 

states two sets of states and such. So, states refer essentially signify a property and therefore a 

predicate. And, so we actually extended this notion we came up with these notions of correctness 

assertions and total correctness assertions. And, we have given some examples all the 

verification we also at the at the end. So, we had these rules the notion of a looping variant the 

notion of a well-ordered set or a bound function which, basically traverses down a well-ordered a 

well-ordering in order to prove termination of these programs. Finally, we ended with an open 

problem on the Collatz problem.  



(Refer Slide Time: 20:18) 

 

So, what would like to do now after this rap is to look at why first-order logic why what about 

higher order logics. What, about second-order logic the other questions are what about we looked 

always at 1-sorted signatures can we look at many sorted signatures in what happens the first-

order logic of many sorted logic signatures. For, example what happens to higher order logic 

these are some questions that a go beyond the scope of this course but will just touch on them.  

(Refer Slide Time: 20:55) 

 



So, here is a simple Summary of what we have done a mathematical treatment of the essentials 

of reasoning a rigorous treatment of first-order logic applications. Basically, to theorem proving 

logic programming and program verification. We, also showed some gave some illustration of 

the power of first-order logic. For, example we required just two axioms for equality to 

axiomatize all properties of equality. And, we showed basically that in many cases you can come 

up with first-order theories which, are sufficiently powerful. But, we also showed that there are 

first-order logic has certain severe constraints. For, example there is a lack of distinguishability 

one of the things we did.  

(Refer Slide Time: 21:37) 

 

So, the Non-standard Model of Arithmetic that we proposed allowed for the axioms of number 

theory to have models which, are not isomorphic to the standard model of arithmetic as we, 

standard model of the natural numbers which, successor as we are used to it and it the fact that it 

is that there are models which are not isomorphic to the standard model indicates that the power 

of distinguishability that first-order logic has is perhaps not enough. And, it does not necessarily 

capture exactly all the properties that one would like which characterize a unique model. So, in 

essentially in this non-standard models what we showed is that, in addition to the existing a 

standard natural numbers. One could actually, have a whole copies of classes of integers on both 

sides and they would not satisfies the same standard axioms of number theory. And, this means 

that the first-order theory of numbers with the axioms that we have got a does not have that fine 



discriminating power Which, can exclude all those copies of integers what were called a Z 

chains. 

(Refer Slide Time: 23:15) 

 

So, it could not actually eliminate them I mean. So, that that fineness of expressiveness of the 

axioms is something that absent in first-order logic especially the first-order theory of numbers. 

And, therefore there is there is an obvious question of how does one proceed. Other thing is that, 

a for example the first-order theory of numbers with of piano arithmetic. For, example includes 

an property of the principle of mathematical induction which, in the first-order case is extremely 

restricted. Whereas, piano is originally intended principle was for all possible properties of all 

possible subsets of numbers which might only be characterized by which might be parameterized 

by as by a some single integer or natural number.  



(Refer Slide Time: 24:29) 

 

So, let us look at certain extensions one is so this so this one possibility is one thing is look, at 

this property of well-orderings by the way this should be for every non-empty subset. Every non-

empty subset of a well-ordered set has a least element. Now, this cannot even be expressed in 

FOL because it requires a power of second-order logic.  

(Refer Slide Time: 24:49) 

 



Because, we are essentially saying that one should be able to given a, set S the well-ordering 

principle along with the first-order predicate less than or equal to. What, we are saying is that the 

well-ordering principle essentially says that we are it is not just about individuals of S. But, 

subsets of S so, if I have some s any non-empty subset of S. Then, this non-empty subset of S has 

a least element. So, how would one express this one would essentially express this by saying for 

all X. Such, that there exist some z such that z belongs to X. So, this indicates that X is a non-

empty set. For, all X such that there exist a z such that z belongs to S. This, indicates that for all 

y the there exist an X this is a small x such that x belongs to X. And, for all y such that y belongs 

to X. We, have that x is less than or equal to y. Now, here it is important to see that this X this 

capital X throughout actually represents subsets of the domain of this course. And, this is not 

something that we allowed in first-order logic. So, even a very basic principle like well-ordering 

cannot be expressed in first-order logic. And, it request at least the power of second-order logic. 

And, in second-order logic essentially what we are allowing is quantification over [subs/subset] 

sets or quantification over first-order properties. If, you were to think of a subset of S you can 

think of it as a unary predicate representing a property. So, while is true that, every unary 

property has a characteristic set.  

(Refer Slide Time: 27:51) 

 

So, for any property phi so let us say phi is the first-order property. Then, I can think of a 

characteristic set of phi has being defined as the set of all elements x. Such, that phi of x is true 



this given a universe of discourse U this set is a subset of U. However, a not all subsets of U may 

be characterized by properties. However, in order in second-order logic every property every 

first-order property is characterized by subset. So, what we mean by the second-order property is 

that now, we should be able to allow a quantification over subsets or over or even firstly over 

properties definitely but more importantly we would require quantification over subsets. So, one 

of the reasons I am saying that while every first-order property has a characteristic set subset of 

the universe of discourse not every subset of the universe of discourse can be characterized by a 

first-order property. Because, if you look if the universe of discourse say the natural numbers 

then the number of subsets of natural numbers is uncountable. However, our language of first-

order properties has only a at most Countable number of formulae. So, therefore while every 

property every unary property is characterized by a subset of N among the natural numbers not 

every subset of natural numbers can be expressed as a unary property. And, a simple 

diagonalization argument would show that this is this is intact true that not every property of the 

natural numbers is expressible in first-order logic.  

(Refer Slide Time: 30:24) 

 

The, other thing for example transitive closures are not expressible when this means that for 

example the first-order theory of directed graphs can have cannot even characterized some of the 

most elementary properties we see in graph in graph theory books.  



(Refer Slide Time: 30:51) 

 

So, moreover so one possibility is to actually tackle the notion of Sortedness so that is one thing. 

So, all are treatment was based on a 1-sorted term algebra and it often does not address the 

interesting problems of a mathematical theory. For, example and the first-order theory of 

directed or undirected graphs in any graph theory book. You, would be able you would want to 

count for example a, you would want to make statements like the directed graph is. Such, that 

every the sum of all in degrees of the graph is equal to the sum of all out degrees of the graphs 

so, that is so that includes counting. And, in the first-order theory of graphs there is no notion of 

counting. So, one possibility is to actually import also the theory of numbers and counting into 

the first-order theory of graphs. And, then try to axiomatize and try to derive properties of let us 

say directed or undirected graphs. So, this first step towards doing this is to actually dispense 

with a 1-sorted term algebra. 

And, allow for a mini-sorted term algebra secondly if you look at this second-order formulation. 

This, is also something if you can think of instead of looking it as a structure of a set S with just 

the less than or equal to. If you also thought of this S union the power set of S along with the less 

than or equal to and may be some other properties regarding sets. Then, we could we could 

actually begin to think in terms of replacing this X this capital X by an individual here. And, so 

and individual could here denote either a single individual element from S or a single individual 

subset of S. And, of course then what we need to do is we need to be able to distinguish between 



these two kinds of individuals. And, that is something that would be part of the sortedness. So, in 

particular second-order logic could then be transformed into a, 2-sorted first-order logic.  

(Refer Slide Time: 33:17) 

 

And, that is what will see will look at it. We, look at this problem now but first is formalize the 

notion of Many-Sorted Logic. So, we had the notion of a 1-sorted logic Many-Sorted signature. 

Now, let us look at an many sorted signature this is important because for example most of our 

programming language is or and the and the compliable programs that one can write in our 

programming in our general purpose programming languages. Or all essentially terms from a 

many-sorted algebra. Because, of the fact that first we are our programming language is he 

abstractly allow us to have many different kinds of elements integers, Boolean’s, Real’s, 

Characters strings. And, then functions defined between them a relations between them and so on 

and so forth. So, in that sense our programming language starts with its signature which, is 

already many-sorted. There, are at least 4 or 5 different kinds of basic elements basic sets from 

which our programs on which are program terms are defined.  

So, we will call these different kinds as sorts. So, we have so assume given a finite non-empty 

set S of sorts with S equal to you know Si 1 less than or equal to i less than or equal to k. So, this 

symbol s here which I used for 1-sorted signatures as just a symbol. Now, gets replaced by a 

collection of such symbols one for each sort one for each kind of element that we are talking 



about, our set of variables also they get slotted into various slots. So, we might think of the set of 

variables V as being divided up into countable disjoint subsets of variables where, each variable 

has a predefined sort associated with it and of course we need always a countable set for each 

sort. And, so will assume that our set of variables V is actually this disjoint union of variables Vi. 

Where, for each sort si in S. And, then we have a countably infinite collection of function 

symbols as we had here. And, that now what we allow a, function symbols to do is something 

that you will see later. It, allow us to take terms from different kinds of sorts. And, give you to 

terms of yet another kind of sort for example is possible to take terms from the integers two 

terms from integers and give you a Boolean. They, are less than relation can also be treated as a 

function for example if, you allow Boolean’s as a sort. And, then of course an countable 

countably infinite collection of atomic predicate symbols as usual. And, then we because of this 

fact that we need to slot variables appropriately.  

(Refer Slide Time: 37:10) 

 

We, also allow for a quantifier symbols one for each sort. So, this so you were to look at this so, 

I have put a subscript i here I have put a subscript i here. Essentially, to say that there is we also 

have for different kinds of elements for different kinds of variables we have different quantifiers. 

Then, a so a many sorted signature is something in which you have your functions f, which 

might take. Let us, say which might be an memory function taking elements from m possible 

different sorts and giving you m plus 1 sort which, is also different. Your predicates likewise 



could take could be parameterized on n different a sorts. And, still and therefore they allow you 

to explicate relationships between the various sorts. Then, of course for each sort it might be 

necessary to also have a binary equality relation equalities rather specialize as I told you before. 

Because, very often we might be talking of two putatively different elements by giving them 

different variable names x and y. And, then we might have to prove that they are really the same 

element in which case equality becomes a, necessary predicate binary predicate for each sort. So, 

will have this equality relation subscripted by i to denote an equality relation on the sort si.  

(Refer Slide Time: 38:34) 

 

Now, our terms are essentially like this the now, so this set of terms T sigma is the disjoint union 

of all possible terms which are been classified into sorts. So, every term in our term algebra now 

has a sort associated with it. And, that sort is one of the sorts taken from the set s. So, for 

example each variable xi belonging to the variable set Vi is of sort si. Now, if I had a function f 

which was of type si1, si2 to sim going to si0 belonging to the signature. And, if I had terms t1 to 

tm which were respectively of these sorts which, were pre which have been defined as being of 

type si of being of sort si1 si2 sim respectively. Then, the net result of applying this function on 

these terms is to give you a term which belongs to the sort si0. So, that is what we are saying 

here each variable xi is a term in t sigma a fact usually denoted by this. So, this is our standard 

this is like our type declarations in a, programming languages. And, in the case of f t1 to tm it 

belongs to the sort si0. So, therefore it belongs to the term of sets, the set of terms ti0 of sigma. 



And, once all terms have been classified in sorts the set of all terms is just this huge union of 

terms for each sort. You, just sort of agglomerate all the sorts of all the terms of different kinds 

into a single set and that you call the set of terms.  

(Refer Slide Time: 40:42) 

 

So, there are Many-Sorted Predicate Logic then just has a syntax of the logic which is exactly as 

before and which we have seen before and so I am going to it a the semantics. Now, requires a S- 

sorted signature with a non-empty domain Ai for each sort si. Then, we just extend the semantics 

in a in a simple way similarly it becomes a little tedious to write it but, otherwise the extension is 

a fairly obvious. And, a this semantics is then a minor extension of essentially the 1-sorted case.  



(Refer Slide Time: 41:28) 

 

Once we have this many sorted predicate logic we can actually do one thing. Firstly a, second-

order logic such is this which requires as you can see basically this notion of well-ordering. It, is 

a second-order predicate simply because we need to be able to have two different kinds of 

individuals one kind of individual ranges over this set over the set S of the universe of discourse. 

And, the other the capital X is actually range over two raise to S the power set of S. So, we can 

think of this as a many as a 2-sorted algebra. As, a 2-sorted structure with a once with a 1-sorted 

predicate with a first-order predicate less than or equal to. And, what we might do is we may just 

think of second-order logic. As, simply a 2-sorted logic with predicates parameterized over both 

individuals and set’s of individuals. So, in that sense we have reduced second-order logic to a, 2-

sorted first-order logic. This, actually a further Reduction possible any S sorted predicate logic 

may be reduced to a 1-sorted predicate logic. By, introducing a, fresh set of unary predicates and 

I am calling the set of unary predicates is si.  



(Refer Slide Time: 43:15) 

 

To, essentially what we are saying here is that, this individual’s small z small x and small y 

belong to S. Whereas, this individual capital X belongs to two raise to S. So, in that sense we are 

dealing with two different kinds.  

(Refer Slide Time: 43:59) 

 

And, the membership or belonging to a certain kind can itself be regarded as a unary property 

which can be expressed by is individual is subset. For, example we can have two different we 



can extend expand our signature to include these two first-order properties which, say that for 

any variable x is-ind of x is true if and only if x belongs to S. And, we might say that is-subset of 

x is true if and only if x belongs to two raise to S belongs to the power S. Then, when we do this 

then it is not anymore necessary to distinguish to syntactically have different symbols for the 

various variable various uses of variables. And, in fact we can conglomerate we can agglomerate 

all the variable sets Vi. So, we can just take V the set of variables to be just this Vi for all the sets 

1 less than or equal to i less than or equal to k. However, but what we need to do therefore is 

when we use quantification we need this implicit information to be used.  

So, then every quantified formula for all ixi phi should be replaced by the 1-sorted formula for 

all x. If, x is si then phi where a now recursively you should we need to transform all the 

quantifiers inside phi also to the 1-sorted case. Similarly, for every quantified formula of the 

form there exist ixi phi we, replace it by the 1-sorted formula there exist x. Such that, is si x and 

phi where again in phi we replace all the quantifiers by this qualification. So, you can think of 

this s sort of bounded so this allows. So, this essentially is like a bounded quantification which 

specifies that type of each individual or membership in a sort it specifies it as a unary predicate. 

So, types that way this is very similar to the notion of types S sets in programming languages. 

 And, we are essentially using this membership as a unary property of an element. So, it is 

possible to prove that all models of an S sorted predicate logic have corresponding images in the 

1-sorted predicate logic with this expanded signature. And, therefore it is possible to show that 

any second-order logic may simply be reduced to a first-order logic in this two step reductions. 

So, there is a 2-sorted logic with a, which is in turn reduced to a 1-sorted logic by introducing x 

by expanding the signature to include. These, membership predicates or property a type 

properties if, you like. This, kind of reduction of second-order logic to a, first-order logic of 

course does have a cost I mean certain theorems like the Lionines Skolem theorem no longer 

begin to hold. But, models can be exclusively constructed and in fact it is this it is this property 

that is used in logic programming to do all kinds of higher order programming also within the 

domain of a first-order resolution. But, of course this kind of reduction applies only to a, fixed 

finite n-th order logic.  



(Refer Slide Time: 48:17) 

 

So, for any given n the n-th order logic so for any given n the n-th order logic of a 1-sorted 

signature may be reduced to a, n-sorted logic and, which may in turn be reduced to a 1-sorted 

logic within expanded signature which, includes unary predicates specifying the specifying 

membership in the sort. And, of course correspondingly all the quantified formulae have to use 

this transformation which specifies the sort as a unary predicate. That is how one word take for 

any n. However, this is not true for all n in the sense that if, you look at higher order logic it 

transcends any fixed bound of n. And, therefore a higher order logic allows for arbitrary a sorting 

of arbitrary creation of subsets in indefinitely infinitely. So, whatever I am saying a refers to a 

fixed n. So, by an inductive process we can actually reduce any for any fixed n any n’s n-th order 

logic can be reduced to a first-order logic with an expanded signature which, specifies the 

hierarchy of types in the quantified in the quantified formulae. And, appropriately what it does is 

that every formula in that n-th order logic a goes through a transformation process which, 

specifies which actually transforms every quantified formula in this fashion. And, so and the 

otherwise the reasoning mechanisms for all these logics are more or less whatever is there in the 

first-order case certain decidability issues become important. So, it is not true that decidability  

by this reduction you can a, reduce all decidability also to first-order decidability. Because that 

has certain special problems associated with it. For, example so, we will not actually consider 

those things. But, you can see that in its essence all reasoning mechanisms as we looked at in our 



first lecture we spoke about validity of arguments consistency matters of truth and false and 

reasoning. All those reasoning mechanisms essentially carry over from first-order logic to other 

n-th order logics. And, well that I would like to actually conclude this session and I hope you 

will be able to expand your knowledge further about higher order logics we using this set of 

lectures as a basis.  


