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Lecture - 38 

Verification of WHILE Programs 
  

You are looking at Program Verification and we had the small language of WHILE Programs 

which, is what we wanted to verify.  
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So, what I did was I will look at this While Programming Language. I defined a small syntax so 

the moment you define syntax you have to define semantics. And, this consist a basically an 

identity function and assignment sequential composition a conditional and looping construct 

basically and unbounded looping construct. So, all bounded looping constructs can be obtained 

from the unbounded looping construct.  
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So, basically the semantics of any programming language is usually treated as a programmers as 

a sort of state transformer. Which, in our case in the context of first order logic works on to 

valuations for some valuations under some model. Usually, and for the purpose of verification 

what we are essentially looking at is the first order theory of that model. So, in general otherwise 

the programming language is actually independent of the model the constructs so the 

programming language or actually independent of the model. But, you could take any kind of 

model but normally of course we take any integers as let us say the model. I mean since, that is 

up to some abstraction that is what most machines actually implement. So, a simple general 

purpose programming language has this functional semantics.  
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Which, I did last time and then the other thing that I wanted to what in the context of first order 

logic. We can also view programs not just a state transformers but as Predicate Transformers. So, 

I something that takes an input property and gives you an output property so but, that essentially 

means that you are talking about it still going to act as a transformer of states from some 

valuation V to some valuation v prime. However, what we are talking about is whether the we 

are taking this valuation from an input property from essentially a subset of valuation which 

satisfies certain property phi. And, we are essentially saying that v prime would be belong to a 

subset which is characterized by the set of valuations which satisfy like say this output property 

of psi.  
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So, then we define the notion of partial correctness assertions and total correctness assertions. 

And, let me correct some mistakes I made last time. Let, us look at this example of Factorial. 

Let, us assume that our signature is some superset of these things I am including the factorial 

symbol also there because, I am going to use it in my verification. But, you can and the other 

thing is that I am taking the entire set of integers as a countably infinite set of constants. Constant 

symbols which, is usually the case except that we in an actual machine we are bounded by a 

finite only a finite subset of Z. But, for the purpose of verification let us assume this an infinite 

set of constants. However, the set of terms that you get is still only countably infinite. Even, if 

you take this entire set Z as a set of constants as part of the signature. So, the model so let us as 

we write more and more complicated programs are signature will actually increase. So, for the 

purpose of this factorial program it is enough to have this much so that is why I have written the 

signature sigma is a superset of this. So, it contains at least these operations let us take this first 

program P1. P1 actually has this condition x is not equal to 0.  

And, under this condition x equals x 0 P1 p equals x 0 actually this should be x equals x 0 greater 

than or equal to 0. Then, p would be the factorial of x 0 prime. But, this partial correctness 

assertion is correct in the sense that if x 0 would negative then, this program would not hold. 

Because, this program checks exactly for x being equal to 0. So, if x is negative it is still enter 

the loop and it will keep decrementing it will keep multiplying something to p and so on so forth. 



But, basically it is never going to terminate. So, in that sense this partial correctness assertion 

actually specifies the partial correctness of this program P1.  

So, this total correctness assertion however is not valid because of the fact that there is no 

guaranty of termination. And, this program might actually not terminate so even if you so if x 

naught is negative then of course the program is not going to terminate. So, with this total 

correctness assertion would not be valid so, that is the first thing.  
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The second thing was actually what I gave yesterday as the program last time. So, here I actually 

have the assertion x greater than 0 as a condition. And, then both the same thing specification 

holds as both partial correctness and total correctness because, this program is guaranteed to 

terminate under the integers always I mean. So, that certain difference between partial and total 

correctness is something that has to be maintained. However, this specification is not technically 

complete in a certain sense. Which is that it only gives you half the story the other half of the 

story when x naught is negative is something that it does not spare say. Thus, notion of technical 

completeness is the I have put it within the double codes. But, you should actually look at my the 

slides of my programming notes where I have defined it more formally in the context of pipe 

systems and so on and so forth.  



But, so normally what we expect is the technically complete specification. So, in that sense this 

specification here are slightly weaker than what might be called a technically complete 

specification. So, the basic idea here is that every program is correct it only depends upon what 

the specification is so this program is technique. I mean so, that technically complete 

specification under the integers essentially would specify what happens when x naught is both 

negative and non negative. And, you actually get this interesting case that when x naught is 

negative then you get your product to be 1. You get this so it is not really factorial I mean and we 

are not programming the gamma function. So, this program is not really the factorial program in 

a strict sense because of the fact that for negative integers it gives a value 1. So, but then but 

however I said every program is correct it only depends what your specification is. So, if you 

give this as your specification as a then that is it take sort of technically more complete 

specification under the integers.  
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So, we were looking at Proof Rules. So, here is a first Proof Rule Epsilon is basically as it is a 

identity function. So, as a predicate transformer it leaves a input predicate unchanged as output 

so that is why you have phi epsilon phi.  
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And, I am only giving partial correctness proof rules here initially.  
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So, the assignment as I said this v prime is actually a variant an x variant of v. In which, x gets 

the value t. So, now this would satisfy let us say supposing this belongs to a set of valuations 

which satisfies the predicates psi. Then, the only alternative the only input possible predicates are 

satisfiable that can act as specification for this assignment are those in which if you had 



syntactically replaces x by the term t. Then, you get a predicate that is true I mean so that subset 

in which x is actually replaced by t by substitution. So, that is here is where the main difference 

comes between this while programming language as a theoretical programming language as 

opposed to while programming language which is going to be implemented on a machine. 

Where, x is going to be the name of a memory location rather than the name of a term. I mean so 

the differences between l value and r value then become prominent. So, what we are actually 

with the abstraction we are doing is that we are ignoring the fact that these variables that we are 

talking about in actual implementations are actually names of memory locations. And, therefore 

they are containers they are not so they are not associations in a functional sense. They, are not 

just abbreviations for terms they are not just names for terms they are actually containers 

therefore, the notion of an l value and r value is something that they are ignoring completely. So, 

that sense our model is a purely theoretical model and does not actually confirm to the notion of 

memory in a standard for nomean architecture.  

And, so you cannot extend this sort of you cannot extend this while programming language to 

one with pointers and expect to get proof rules all such things in just in exactly the same way. 

And, in fact that issue of dealing with heap structures and pointer evaluations in memory is still a 

subject of certain kind of research it is not easy to get elegant programming logics by which you 

can prove completely the properties that you normally expect from let us say object oriented 

programs or programs with pointers and so on and so forth. Because, the notions of l value and r 

value are very crucial that. So, this notion this particular assignment essentially treats this 

variable as just another name for atom. And, that is way the substitution is possible otherwise 

under l value r value conditions pure substitution would not be possible.  
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Composition so essentially what we are saying is you start from a state satisfying a predicate phi. 

And, the effect of P would be to give you a state satisfying some psi and the effect of Q would be 

to give you on that state satisfying psi would be to give you a state satisfying psi. And, that 

composition is essentially functional composition written as this proof rule.  
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The, conditional of course is just that you take this state satisfying phi and that can be divided in 

½ between those that subset we satisfies the condition chi and that is. And, the other ½ which 

does not satisfy chi. So, I have put an a huge gap just to emphasize the difference. So, essentially 

what we are saying is you execute this program you execute this conditional if chi then P else Q. 

As, a if it starts form a state satisfying chi and phi then, it will take Q to some post condition to a 

state satisfying psi through P. And, if it starts in a state not satisfying chi but satisfies only phi 

then it will take you through Q again to the set satisfying psi. So, the conditional allows a 

branching of the division of the input predicate in two subsets to partitions the inputs into two 

subsets.  

(Refer Slide Time: 14:48) 

 

Finally, the loop the proof rule for the loop and one of the things that is always been the bug bare 

of most programmers is understanding the notion of a invariance. So, essentially if you look at 

this proof rule what we are saying is there is this state in located in phi. There, are two 

possibilities either chi is satisfied or chi is not satisfied. If, chi is not satisfied of course then, 

what happens is it actually nothing happens it remains in this state I mean the effect of the 

program is to do nothing to it. But, if it is in a state if it starts from state satisfying phi and chi. 

Then, it comes back to some other state may be satisfying both phi and chi or it goes to another 

state satisfying chi or phi but not chi. Now, this looping can happen as often as possible and this 

phi therefore actually is sort of I mean it you can think of it as, that while loop as and if then else 



within infinite unfolding and infinitely nested if then else which has infinite exit branches 

depending upon the number of iterations of the while loop.  

And, this phi this loop invariant is essentially a disjunction of all those thing that guarantee 0 

iterations, 1 iteration, 2 iteration, 3 iteration and so on in infinitely. So, that is why that is 

actually an infinite disjunction but, what you want to do is that you want to capture that infinite 

disjunction by what you call an invariant property. So, this invariant properties are but of course 

what these invariant properties are what make your understanding of the loop actually quite 

complete. In this way there are some trivial invariants not like the predicate rule itself is an 

invariant anyway of every loop.  

But, unfortunately that is not helping you prove the program. So, what you require is a fairly 

strong invariant properties so if the choice of a fairly strong invariant property which allows you 

to prove the program is what you are usually looking at will come to that. But, more importantly 

most often your specification is some phi and some psi and the relationship between the phi and 

psi is not that of is not necessarily that of implication.  
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So, there is a weakening rule called the Consequence Rule. So, this is the only logical rule which 

is not part I mean which is not structurally inductive in the sense that. Here, you are actually 

using the theory of first order logic completely so take a look at this. So, here the picture 



essentially says that supposing I want I have got this specification phi P psi. So, I want to prove 

that this program P satisfies the specification pre conditional phi and post condition psi. But, I 

am able to prove was stronger property. And, what do I mean by a stronger property? I mean that 

supposing there is a phi prime which is a weaker than phi and there is a psi prime that is stronger 

than psi. The notion of strong and weak is just related by implication so if phi implies phi prime 

then phi is stronger than phi prime. So, if I can prove that from a larger subset of states I am 

always guarantee to go to a smaller subset in the output. 

Then, I can claim that from this smaller subset I am always going to some element in this larger 

set. So, this is a weakening rule and in fact in the context of so this is what allows you to go from 

loop invariants to specifications. So, if your loop invariant is some phi i and you are suppose to 

prove that this while loop actually satisfies some phi and some psi pre condition and post 

condition. Then, all you require is that this phi imply this phi i. And, this phi and naught chi 

imply that psi that you are looking at. So, you still have to find the strong enough invariant but 

having found this string enough invariant. You relate it to the phi and psi are of you original 

specification through these logical implications. Now, these logical implications are essentially 

things that require a proof an preferably an automated proof. But, in our case will just do a hand 

proof of let us say a program.  

So, what these phi arrow phi prime and psi prime arrow psi are essential components of given 

starting form a given specification going to an implementation and proving its correctness these 

are essential components. So, normally what happens in modern program verifiers is that you 

have a separate first order logic theorem prover. And, you form out all these implications to that 

theorem prover. So, that proves it in the first order theory of integers or whatever structure is 

your underlying model and the results and the true or and the results of that come. So, what your 

actual program verifier does is? It just gets these triples and all the connection between various 

kinds of triples have to be done through the theorem prover let us say a first order logic theorem 

prover in this case.  
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So, will see how this rules are applied again by so here is a summary of all these rule of Partial 

Correctness. There, is no difference is just to put them all in one place it is a same the only 

difference is there is the bracketing rule. This, is of course purely syntactic and what we are 

saying is that brackets do not have any particular significance. So, we just this should have been 

a psi here written phi here should have been psi both the numerator and the denominator.  
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Now, however now there is a question of Total Correctness. So, if you look at all the basic 

constructs except for the while loop. So, termination is guaranteed in all constructs except when 

there is a while loop so that is obvious. So, now what so therefore the proof of total correctness 

and therefore of termination can actually be separated out from the proof of partial correctness 

by proving termination separately. And, so what we do is we have to define some measure called 

the bound function. And, let me call that Beta. So, beta is actually a function of all the program 

variables. So, which means you basically take the free variables of your program and beta is 

some function about that such that so essentially the domain of this function beta is the set of all 

triple values of the program variables taken in some order. Take all the programs variables in 

some order triple look at all so essentially it is a Cartesian product that is the domain. The, range 

of beta should be some well ordered set. Which, means it could be an infinite set. But, it has a 

bound below.  

So, it is well ordered so it has to be an ordering relation. So, let us call that less than and of 

course the converse of less than is greater than it is bounded below by some least element for the 

moment let me call it 0. Basically, you take any countable well ordered set. That, countable well 

ordered set can be placed in one to one correspondence with a subset of the naturals. So, I am not 

saying so that is why I am using this 0 here that is a sort of typical element it need not be 0 it 

could be some so, you take any well ordering any well ordered set it can be mapped on to a 

subset of the naturals. Such, that the well ordering the less than relation on the well ordered set 

corresponds to the less than relation on naturals. And, this well ordered subset of naturals of 

course has a least element and that is the bound that you are looking at.  

So, I am for the moment I am just calling it I am just using 0 as I am using a red 0 to say that this 

red color indicates that you know what we are talking about here is not exactly related everything 

it may not be related to the domain of structure the model on which the program is based. So, it 

may so in the sense that if you were to take some program. Let, us say on some data structure 

with no arithmetic in it. Let, us say you are just doing less processing or some such thing with no 

arithmetic. But, you can still get your bound functions and so on and so forth and arithmetic in 

terms of length of that list length of the list that is left to be processed and so on and so forth.  

So, this red color indicates that these that domain the range of B need not necessarily lie within 

the same model of the program variables. It could be different and in particular you it could be so 



you may not be dealing with a natural numbers at all in your programs. But, however your bound 

functions would still involve counting. Let, us say at least it can be mapped on to a counting 

problem which so therefore it goes down to it can always be mapped on to just the termination 

aspect just bound function can be mapped on to some subset of the naturals under less than. 

What is bound function needs to guarantee? What is the relationship it has with the program 

variables? One is that when this invariant property and the condition are both true. Then, this 

bound function should evaluate to something other than the bottom element of your well ordered 

set. So, it should be somewhere higher order so that is this greater than 0 that I have written here. 

And, whenever this bound function is 0 or whenever it reaches the bottom of the well ordered 

set. The bound of the well ordered set it should definitely mean the negation of the condition of 

the while loop. Now, notice it these are the actually one way implications.  

So, one thing is that it is quite possible that this condition becomes false even though the bound 

function does not reach the bottom of the well ordered set that is possible. And, if the bound 

function is positive that does not necessarily mean that the condition should be true. If, you want 

to understand these things just take something like GCD. Let, us take the GCD program I do not 

have to write it out we all know how to do GCD. So, that the GCD traverses down essentially 

given a initial set of naturals x and y both them positive it travels down a well ordering. The 

ordered pair x and y keeps reducing according to a certain let us say Lexico graphic ordering of 

on pairs. And, it never touches 0 but it will terminate as soon as the ordered pair is two elements 

of the ordered pair are equal for example. And, so therefore the fact that the bound function 

never reaches in that case the bottom element of the but your still your range is still in a well 

ordered set. So, this is by the way range B ordered actually I should have said B is the this beta 

should be an injective function into a well ordered set. But, so that is so these two implications 

are carefully chosen to satisfy only the forward properties and not necessarily the reverse 

properties. So, you can terminate the loop before you reach the bottom of the ordering.  

And, if you have reach the bottom of the ordering then it does not mean that your if you have not 

reach the bottom of the ordering then it does not mean that you have any more iterations to do. 

But, if you have any iterations left to do then you should not have reached the bottom of the 

ordering. And, if you have reach the bottom of the ordering then there should be anymore 

iterations that is way the boundary function has to be designed as a measure. And this can be 



very trivially in certain cases but it can also be quite complicated in certain other cases. I will 

show you where it is there is an still open problem regarding these bound functions which have 

available I will let you know. It actually came as a problem of number theory but we can always 

translated into a problem of programming.  
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So, now our termination rules are exactly like our partial correctness rules except for that this 

explanation not indicates termination except for the while rule. So, what we are saying is again I 

am using red because my measures of termination may be different from the domains and using 

for programming. So, I have a looping variant I have a condition and I have a bound function of 

the programming variables which I am writing as v vector. Which, has some value b naught 

which is greater than the bottom element of the well ordered set. And, each execution of the 

body of the loop maintains a program a maintains a invariant property phi. It may not maintain 

the condition chi but what it does due to the measure is that the new measure the new value of 

the measure on the new value of the program variables is should be guaranteed to lesson to 

traverse down the at least one step in the well ordering. So, if you started with an initial value of 

b naught now beta of v evaluator should give you something less than b naught. And, if you 

guarantee this then what we are saying is that this loop will always terminate. Because, this 

measure cannot go below the lower bound of the well ordering and when it does terminate the 

condition would be false. So, beta is of course the bound function satisfying these properties.  
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Now, let us just look at this Factorial and let us just do a quick proof. So, what I have done now 

is this typically I should have written them as triples. But, under sequential composition the right 

hand side of the k’th the post condition of the k’th instruction is often the precondition of the k 

plus one’th instruction. So, instead of writing it as tuples I have written it as pairs. So, except 

when the precondition of the next instruction is different or I need to prove some logical 

consequences so on and so forth. So, you can think of these downward implication signs 

essentially the use of logical consequence and whatever precedes this statement is the 

precondition. So, this is a precondition and notice that the assignment rule if I start with a 

precondition which does not involve anything to do with the variable that is being assigned.  

Student: Sir if so in nothing to natural numbers from of beta is it compulsory in it.  

 It is not compulsory.  

Student: Can we if it mapped to the real numbers then it.  

The choice of beta has to be done by the programmer. It cannot be mapped to the real numbers 

because the real numbers are not well ordered by a well ordering I mean I am actually you for all 

practical purposes you can think of it is a discrete set not a set which is got is it cannot so even if 



you take. Let, us say the non negative real numbers the non negative real numbers have a lower 

bound but any open inter open sub interval within them does not have a lower bound.  

Student: So if it is the non negative real number.  

So, what it means is that those kinds of bound functions do not guarantee anything because you 

are not getting a well ordering. So, the whole point is that your programming language uses 

discrete sets and so you have to ensure discreteness and a well ordering which so what are we 

saying now by when we say a well order set. We are actually saying that you take any element in 

that well ordered set there does not exist in infinite descending chain to the bottom. Whereas, 

you take the non negative real even though they are bounded from below there exist a lot of 

infinite from a any positive real number there are more than a countably infinite number of 

length descending chains.  

So, that is not valid whenever I say well ordering I mean that all descending chains have to be 

finite. They, cannot be infinite the set itself can be infinite but from any particular point on the 

set you cannot do an infinite decent. Now, that automatically throws out the real’s it and once it 

throws out the real’s I mean you could use rational’s if you like. But, you know that also throws 

out in fact you cannot even use den sets. So, you have to use discrete sets but then any discrete 

set would just be at most countably infinite and therefore there is a mapping into the naturals so 

that is what happens.  

So, what usually happens is that I mean if I am my this programming language of course is 

actually independent of the domain that we are considering. So, as I said might you might just be 

doing manipulating a lists of let us say characters or integers or some sets I will let us lists of 

characters and they might be no notion of integers. But, your bound function is still somehow 

related to the structural inductive co property of the list and there has to be a finite bound always 

you cannot descend in infinitely that is the point. So, you could so your well ordering could be 

some structurally inductive structure which is not necessarily in the naturals. But, if it is well 

ordered then I can provide a I can there is a through zone’s lemma and various things you can 

naturally provide a mapping into the naturals. So, that is not a problem so in the case of this 

particular case. Of course, what we are going to do is. I measure is going to be just one of the 

variables itself the variables that is decreasing and that is so it is as simple as that. But, so here 



what happens is let us look at these assignment so essentially if I take if this to be psi. Then, what 

we are saying is the precondition should be something that such that.  

If, I replace all occurrence all free occurrences of p by 1 by this 1. Then, I get something that is 

true so actually this one actually is x equals x, x naught implies x equals x naught and 1 equals 1. 

So, there is an implication there so I am actually using the assignment so that is a this backward 

assignment is one of the most engineers things that came up with the back what is known as the 

backward rule for assignment. And, that is essentially this. So, this essentially works out to 1 

equals 1. If, you look at the assignment rule which says that I replace all free occurrences of this 

predicate of p in this predicate by this term 1.  

And, when I replace all free occurrences of p in this predicate by this term 1 I get 1 equals 1. 

And, that is a trivial tautology of first order logic with equality on terms. And, of course then we 

have this which is so if x is greater than or equal to 0. Then, my invariant property essentially 

says that I take p any time and take the factorial of x and I should get the factorial of x naught 

prime. And, initially that is true in fact your initialization for p is guided essentially by that. So, 

that a by the identity element for multiplication so this is true and of course if x naught is less 

than 0 then of course we are setting p equals 1. So, I am taking the technically complete total 

correctness specification that I mentioned earlier and what I am going to do is. I am going to 

essentially prove that prove this post condition if, x naught is greater than or equal to 0 then p is 

equal to factorial of x naught. And, if x naught is less than 0 then p is equal to 1. I am going to 

prove this as a post condition and in order to prove this. I am finding all these kinds of logical 

consequences which, would somehow help me come up with an invariant property. Because, I 

got a loop here so I require a loop I require an invariant property for the loop.  

So, I have to find various kinds of logical consequence I have to massage things in such a way 

that I can get my invariant. One thing is if you look at this predicate x naught less than 0 arrow p 

equals 1 is and x naught equals x here. This x naught equals x should go this phi naught so, I let 

me take this phi naught. This, phi naught does not mention any x anywhere and if x naught is 

greater than 0 greater than or equal to 0. Then, anyway this predicate x naught less than 0 arrow 

p equals one is really true. So, this phi naught is actually anyway going to be invariant of this 

loop. It is not going to change in this loop its truth is not going to p alter in this loop. So, I factor 

out this phi naught here and here since x naught is equal to x I can actually write this. 



And, I have therefore phi naught and x is greater than or equal to 0. Then, p multiplied by x 

factorial is x naught factorial. When I have this condition x greater than 0 then I can make that a 

conjunct of this. And, when I make that conjunct of this I get x is greater than 0 and p multiplied 

by x factorial equals x naught factorial. And, what I am going to do is and what I am saying is a 

part of a log and this actually this whole predicate phi naught and this x greater than or equal to 0 

arrow p star x factorial equals x naught factorial and x greater than 0 together actually implies 

this whole thing.  

And, I have brought a it brings in the bound function also automatically because my bound 

function is just the variable x the value of the variable x. So, the x greater than 0 ensures that my 

bound function I have got only two variables in the program x and p. And, I am defining my beta 

of x and p to be just equal to x. And, that is anyway greater than 0 here of course red 0 and the 

violet 0 are the same 0. Where, the both same brown 0 that is because it is an integer programs 

but so if this condition is true. Then, this is what I am going to keep as my sort of invariant 

property the everything other than red is the invariant property.  

So, now when I look at this assignment so I am going to do these two assignments. So, look at 

this assignment p is assigned p star x. So, what we are saying here is so take this condition and 

replace p by p star x. That, is what your assignment goes backward from the post condition to the 

precondition. If, you replace p by p star x and you have got x minus 1 factorial then by the 

associativity of multiplication you get p star x factorial equals x naught factorial. So, this is hold 

but, the invariant does not necessarily hold so what happens here is that I am replacing.  

So, if you take here p star x factorial x naught factorial then, if I replace this assignment is x is 

assigned x minus 1. So, if I replace x by x minus 1 syntactically then, I get this 1. So, notice that 

in this case I have maintained this invariant portion this is phi naught and x greater than or equal 

to 0. And, p star x factorial equals x naught factorial is the invariant phi. And, that is maintained 

from here to here. In, between because of these updations the invariant gets partially destroy and 

then it gets restore. So, in fact here it is here this invariant property is got destroyed because I 

have x minus 1 instead of x. But, then doing the assignment x is assigned x minus 1 restores the 

invariant.  



So, with inside the loop the invariant can get destroyed and restored. But, at the end of the loop 

before you go back to checking this condition again that invariant has to hold and it does hold as 

a termination is concerned. What, we have ensured is that the bound function reduces by at least 

1. And, the entire theory of proving programs using invariants essentially requires this at the start 

of the loop you have to define an invariant a strong enough invariant. Before, the end of the loop 

that invariant has to be restore even if it gets destroyed in between. So, this ensures that this loop 

with this precondition and this post condition is perfectly correct. And, of course this post 

condition implies this the post condition of the actual program that we wants. So, we have used 

using the consequence axiom consequence rule in order to show that this is this program is 

totally correct. So, this is the formal basis by which you have to do program verification. In, a 

typical programming codes where there is an first order logic.  

What we usually do is we usually should look for an invariant property a strong enough invariant 

property. And, you should look for a bound property and you have to at least intuitively argue. 

That, you are bound function decreases with every iteration. And, usually in a typical 

programming course we take the bound function to be in their naturals or some naturals or some 

such thing or some finite subset of integers or at least subset of integers bounded below. And, 

that invariant property normally I explain it as saying it essentially gives you a conjunction of 

two things. How, much work has your loop already done? How, much more work left needs is 

left to be done? So, this bound function. How much work you already done is what this invariant 

tells you. And, how much work possibly needs to be done is what this bound function tells you. 

This, bound function essentially gives you an upper bound on the amount of work you may have 

to do. Then, that is the number of iteration’s left is at most bounded by that.  

So, this is the rest I think you should go back to your original programs and write some trivial 

programs. And, see that you can come up with invariants even if you could not come up with 

them in a CSL 102 at least. Now, in the light of fresh situation may be you should try to do it. 

And, by the way all these rules these rules have been applied exactly syntactically where the 

syntax varies we have to prove logical consequence a completely syntactically. Remember that 

that is important that something that we do not normally emphasize in programming because, 

that takes too much time. But, for small programs it so which it is completely syntactic what it 



means is that you can actually do a backward movement from the post condition to some 

precondition. And, then form out the corresponding these are known as verification conditions. 

These logical implications which use the consequence rule are called verification conditions. So, 

basically you what you want to do is you want to go through these rules syntactically driven. 

And, come up with all kinds of predicates then, you have a specification which is some phi and 

some psi. And, you have to prove what are known as verification condition you have to prove 

that precondition implies whatever precondition you are calculated syntactically. And, whatever 

post condition you have calculated syntactically implies the post condition that is given. So, 

those two verification conditions have to be formed out to let us say first-order theorem prover 

you know independent of the program. So, the two modules remain independently there is a 

syntactic engine with just does a broot force propagation of rules through the rules of post 

conditions and preconditions and fines. And essentially annotates every line of the program and 

then the connections using logical implications are all formed out separately to a theorem prover. 

So, that is what happens talking about an open problem a lot of you after forth year will have lots 

of time in your hands. In, fact you will have the rest of your life in your hands so you are so 

maybe you spend some time thinking about this it is called the COLLATZ PROBLEM. And it 

was actually it was actually defined by a Dutch mathematic student and it is a very famous open 

problem in number theory. But, actually what this problem is that it just it is just it just worded as 

an iterative program. 

You, can think of it is a while program. So, what you are saying is you take an positive integer 

greater than 1 I mean if it is 1 there is nothing to be done. If, it is even divided by 2 if it is odd 

multiplied by 3 and add 1 do these two do these operations repeatedly. And, the conjecture is that 

it will always terminate with 1 this process cannot be infinite. So, dividing by 2 reduces takes 

you down your well-ordering. But, multiplying by three and adding 1 makes it even you can 

think of it as multiplying by 3 and adding 1 and dividing by 2 also as 1 operation if you like. But, 

that takes you up the ordering of the naturals so it is a sort of fluctuating thing and the conjecture 

is that it cannot do that forever it has to come down to 1 at some point. 

So, this is called the COLLATZ PROBLEM. And, basically what is this is a simple single while 

loop that is it. While so, if x is even x is assigned x due 2 if x is odd x is assigned 3 x plus 1. 

And, now what you are saying is found a bound function which you will ensure that it 



terminates. It touches that is really what you are looking at and, the whole thing is within first-

order number theory. And, there is at the moment at least from the point of the view of that 

problem there is not anything more than first-order number theory.  

You, require because the signature you are using is very simple you just using either, successor 

and you are using division by 2 and multiplication by 3 that is it. So, you are doing something 

very trivially it is a very trivial program. But, because of the fluctuations it is not clear what 

patterns was fluctuations takes place it is been an open problem for over 100 years and it is not 

clear what kinds of techniques should be used to prove that this converges to 1 always. So, those 

of you are on the threshold of graduation I mean you can spend the next 50, 60 years trying this 

out typing you will have plenty of time to try them out.  


