
Logic for CS 
Prof. Dr. S. Arun Kumar 

Department of Computer Science 
Indian Institute of Technology, Delhi 

 
Lecture - 36 

Towards logic Programming 
 

Actually many of you have actually studied some amount of prolog and programming languages. 

But, it is a good idea to look at it from the point of view of look at logic programming which is 

different from prolog at least lightly different from prolog from the point of view of or it might 

be called first order theories.  
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So, the last time we look at first order theories so, we look at for example this kinds of the notion 

of directed graphs. And, then undirected graphs and in Irreflexive partial orderings Irreflexive 

linear orderings. And, in all these cases what you are essentially saying is your first order theory 

is just all the logical consequences of the set of axioms. So, for example this set capital pi i a low 

which contains all these axioms for Irreflexive linear orderings. You, take all the logical 

consequences of these axioms. In, some sound and complete proof system for first order 

predicate calculus with equal usually equality. Then, all the logical all the statement that are 

logical consequences of these axioms and of first. So, that includes logical consequences include 

all the valid statements of first order predicate calculus involving these all the and all the 

statements that are derivable using lets a some proof system. 

So, in particular one proof system on can use so it could be a tableau proof system or it could be 

a resolution proofs system or even it could be style proof system. But, the whole point about the 

style proof system is that or the natural reduction proof system is that, it is not very directed and, 

for it is not very deterministic. So, it is not clear how to automate the proof because most proofs 

by the style system require some impression of how one would go about trying to prove a logical 

consequence. On the other hand resolution in the case of tableau of course what you are saying is 

then you have to know the logical consequence. That, you are trying to prove take the negation 

of that and essentially obtain a close tableau. If, you can get a close tableau then of course you 



are prove in it. In the case of resolution is similar to the tableau you take the negation of the 

logical consequence you are trying to prove. And, you try to do all possible try to find all 

possible resolvants. And, any anyone resolvant which leaves you to the empty clause is a correct. 

Which, leaves you to an empty to the generation of an empty clause is actually a correct proof of 

their logical consequence means that so that is the perspective in which we should look at. So, 

we are looking essentially first order theory. So, And why we are restricting as saying to first 

order theories? In general even if certain theories of higher order we could actually do some 

hackwork. So, one of the hackwork that you can do is to actually import the entire higher order 

carrier set. So, if you are looking at both higher order properties of lets a numbers. Let us say 

second order properties then essentially you are looking at properties of subset of the number of 

the set of naturals I say.  

So, then what you could actually do is in your signature you could actually put in all those 

relations as part of the signature. Which, have to do with the second order functions a second 

order relations. And, in your carrier set for the models can include both the naturals and subsets 

of naturals. And in which case if your carrier set includes them then those second order 

properties or numbers. Since, they are part of the models itself they become first order properties 

of these larger carrier set which includes subsets of numbers 2. And, the reason reasoning 

mechanisms then are essentially the same there has to be some interface which some operations 

which allow you to extract things from sets of numbers treat them as individuals so and so on so. 

Which, means that you require also a tight system which distinguishes whether a certain 

individuals represents a number or set of numbers. So, the types of system in so in order to have 

the type system. What, you need to do is you need to add extra relations like is number is set of 

numbers and axiomatize them to. So, it is not possible it is not necessary that you can do all 

higher order that way. But, you can do a limited amount I mean you can just first order and 

second order. Let say properties of numbers and sets of numbers I mean that is you can make it 

all a part of the logic. The reasoning mechanisms will be essentially the same and in fact what 

happens a in logic programming is essentially that certain limited number of orders or part of the 

axiomatization that you actually put in your a logic programs so, that is the basic idea. Since, the 

reasoning mechanisms are essentially the same.  
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We, can you can you can look at logic programming essentially as a logic program as an 

essentially an axiomatization of the properties of some structure that you are looking at first 

order structure.  
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That is what so, we had all these like reflexive linear orderings and equivalence relations we had 

Peano’s Postulates one interesting thing of course. And, so again you are the postulate number 

five P5 is actually higher order for any order.  
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But, what we will generally have is Peano’s an induction Postulate which what for whatever 

relations that you are limited to in your signature that’s what it will be. So, one for each relation 

that you have in your signature is what you will get as P5. So, what you will get not the full 

power of Peano’s Postulates. But, the restriction to whatever relations are defined in you are 

signature.  
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So, well then we also look at Finite models and if you look at a Nonstandard Models. And, we 

essentially showed that you can have accountable number of nonstandard models of arithmetic. 

which but it is. So, the usual model of arithmetic consisting of just the naturals which is like the 

smallest set that can be generated with 0 and, successor operation. And, is closed under successor 

operation that, smallest set is called by standard model of arithmetic. So, implicitly in the 

standard model of arithmetic what you are essentially saying is that. You, are not considering 



any other junk elements which may be added like this, 0 prime or 1 prime or 2 primes. You, are 

not adding any more junk elements so, you are looking at the smallest set. That is only implicit 

and it is not actually expressed as a first order logic formula.  
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So, we had nonstandard models and we had what are known as Z- Chains basically you can 

create various images of the integers all distinct and not isomorphic each other. And, you can 

actually create accountable number of them in nonstandard model. So, there are accountable 

number of nonstandard models of arithmetic and, so those were some first order theories.  
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So, now let us towards logic programming the first thing of course is that Robins did was he 

reverse the arrow. So, let us you define phi left arrow psi as being just an alternative way of 

writing if psi then phi. And, it is usually red as pi if psi let us take any clause C. So, we are 

essentially looking at logic programming as through resolution. So, let us take any clause C I can 

partition that clause C into their positive and negative literals. So, let us assume that there are p 

positive literals and there n negative literals and giving them distinct names. But, there is 

negation symbol before each of them. Remember that in resolution during unification anyway 

the negation symbol is removed you are doing unification of complimentary pairs after removing 

the negation symbols.  

So, now essentially this clause is logically equivalent to the universal closure of all the free 

variables that occur in this predicates. And, therefore it is a clause disjunction universal closure 

of the disjunction of all the literals both positive and negative literals. And, of course if you look 

at the negative literals it is an OR of NOT. And so Demorgan’s law is applicable. Which, means 

that is logically equivalent to not of and. Where, I essentially factored out the negation symbol 

from the negative literals. And, when I have this naught then this is essentially like saying that 

this conjunction of the literals which occur in negatively take that positive forms take the 

conjunction of the positive forms of the negative literals. And, a that should essentially logically 

imply the disjunction of the positive literals. Which, by reversing the arrow essentially get that 



the disjunction of the positive literal is true. If, the conjunction of the positive forms of that 

negative literal is true. So, this clause may therefore be written in this form will use this is the 

notation for the clause. So, that negation the negation symbol does not appear any. So, the to the 

left of the left arrow the commas indicate a disjunction or and to the of the left arrow the commas 

indicate conjunction. So, you are taking conjunction of new one to new n here you are taking 

disjunction of phi 1 to phi p. And, you are saying that disjunction of phi 1 to phi p is true if this 

conjunction of mu 1 to mu n is true subject to an implicit universal closure of all the free 

variables.  
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So, what one can do now is one can consider a restriction of this notion of clause. In, which the 

set of part positive literals is restricted to being at most 1 a single term set of positive literals. 

And, the rest there essentially negative literals and we are never ever going to use the negation 

symbol. But, so this is restriction of the language I mean so, let us look at or first order logic in 

prospective. So, we had this full first order logic then we had premix normal forms. Which is 

restriction of the language to those in which the quantifiers got factored out. And, of there is 

purely propositional body of predicates following the quantifiers. And, in the case of the premix 

normal conversion you actually preserved logical equivalence. So, in that since by restricting the 

syntax of the language you have not restricted the meanings in the models in any way.  



So, this smaller language of premix normal forms is good enough for the whole of first order 

logic you don’t require the full first order logic. Further of course in the case of premix normal 

forms from proposition logic we know that we know that. If, you restrict proposition logic to just 

conjunctive normal forms then there is there also logically equivalent to just conjunctive normal 

form. So, a restriction of proposition logic to pure conjunctive normal forms does not in any way 

restrict the expression of the language. So, which gave us premix conjunctive normal forms. So, 

every first order logic formula is logically equivalent to another first order logic formula in this 

restricted clause in this restricted language of premix conjunctive normal forms.  

So, far logical equivalence was preserved and therefore expressiveness of the language was not 

was not in any way alter. Then, what we did was we sured a we colomized by removing by 

replacing existential quantifiers in the premix conjunctive normal form by appropriate function 

symbols. By, adding expanding the signature in this process we actually lost logically proofs. So, 

thus colomized forms a no longer logically equivalent to the original formula because there are 

models as for as satisfy. So, in what we have lost logical equivalence in the sense that there are 

models of the original formula. In, the sense that if the original formula is satisfiable then, there 

is a Herbrand’s models we satisfies this colomized form with the expanded signature. So, the 

expanded signature essentially gave you different classes of models under interrelationship 

between the models. So, all the models of the original formula were there in the expanded in this 

colomized form but, the colomized form actually use an, expanded signatures. So, in that sense 

as far as logical equivalences concerned the two sets of models are not really comparable.  

So, what we preserved in the process of colomizing was the property of satisfiability or 

unsatisfiability. And, anyway by Herbrand’s theorem we know that, satisfiability or 

unsatisfiability essentially is restricted to the Herbrand’s universe it is sufficient to restricted to 

the Herbrand’s universe. So, in colomization we did not preserve logical equivalence because 

anyway the signatures are different. And, therefore are not comparable however we preserved 

satisfiability the existence or non existence of a model. That, question could be equally well 

answered in the colomized form as in the original form. So, that was the first compromised with 

a logical equivalence. Now, a in the class so resolution therefore since it preserves the notion of 

satisfiability or unsatisfiability it was sufficient therefore to use colomized forms. And, let us use 

resolution in order to prove in order to refute in order to prove logical consequence. You, just 



took the negation of the logical consequence and deduct resolution refutation. So, there that is 

where a, that is first place we are compromised on logical equivalence. And, now here is a 

second place that we compromising. So, if you are restrict your language to Horn Clauses. Now, 

you are not even you are not even preserving basic satisfiability or unsatisfiability. So, this is a 

restricted language the only thing about this language of Horn Clauses is that, the Clauses of 

Horn clauses is exactly corresponds to the clause of computable functions. And, the resolution a 

proof procedure that that is going to be used for horn clauses. Therefore, will do inductive 

computations very much like in function programming language. So, there is a certain things 

which I have been done like the undesirability of the validity problem. So, there are 

undesirability or validity of a formula is intrinsically not compute not necessarily computable in 

the sense. That, there is no general purpose algorithm which given any first order logic formula 

will be able to tell you whether it is valid or not. Where, as in the case of Horn Clauses a more or 

less you can think of it as sot of desirable subset proving validity for restricted version of the first 

order logic. But, the restriction is such that, the notion of computability can still be captured 

using horn clauses. So, in that sense the subset the language subset of horn clauses exactly 

corresponds to the computable function torturing computability.  

So, whatever is decidable in Horn Clauses what is computable also. So, most computation can be 

converted into a decidability question so, that it gives an answer yes or no. Because, you can 

basically convert every function into a relation and then just looking for membership in the 

relation. So every decidability every computability question can be converted into a, decidability 

question and vice versa of given any decidability question you are just looking for Boolean 

function or Boolean computable function. So, that two way processes is start of and that, two 

way process is what you are looking at and these horn clauses exactly captured that. And, how to 

they so what happens so a clause C is a horn clause. If, there is at most one positive literal and all 

other literals are negative. So that is what 0 less than or equal to p less than or equal to 1. 

Essentially says that there should there can be only 1 positive 1 literal on the left of the left 

arrow. So, this if p is equal to 1 then this is called program clause or rule clause. And it is a 

program clause or rule clause is a fact if there are no conditions you should read this as.  
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So, supposing you have supposing there is a positive literal phi then you are looking at so phi if 

mu 1 to mu n. So, what you are essentially saying is a phi would be true if, all of these remember 

that negative literals you remove the negation and you take the conjunction of the literals. So, phi 

is true if mu 1 is true mu 2 is true and, dot mu n is true. So, it is a conditional statement in that 

sense. And, if this n is 0 then you just have phi if nothing so that that what you are saying is that 

phi is true always that is called fact. So, this is equivalent to essentially phi is true if true, an MP 

because the conjunction of an empty set is true by the identity property. So, then this is this is of 

course logically equivalent to phi being true.  

Therefore, phi is so this called a fact or unit clause if p is equal to 1 and n is equal to 0 and it is 

called a goal clause or query if you don’t have anything on the left hand side. So, you just have 

some mu 1 to mu n. And, you do not have anything here and this is this goal this notion and each 

of these so this is called a GOAL clause and each of these are called the SUBGOALS. So, you 

are asking essentially whether it is possible for mu 1 to mu n to be all true simultaneously that is 

really what you are asking. So, what you are asking therefore is there are model of this 

conjunction of the set mu 1 to mu n. Where, of course we are assuming that there all universally 

closed and so on so forth. I mean that it does not matter but you are just asking for whether there 

is a model. So, if you look at this goal clause.  
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A, GOAL clauses form mu 1 to mu n it is actually logically equivalent to universal closure of 

this disjunction of negations. Which, is equivalent to saying that there does not exist ant 

instantiation of the variables which will make all of them true mu 1 to mu n. So, the question if 

you look at it as query is there a model of which will make mu 1 to mu n simultaneously true.  

(Refer Slide Time: 25:38) 

 



That, is equivalent to taking this adding into program clauses and proving that it is unsatisfiable. 

So, I have logic program so a, Logic Program is essentially set of horn clauses. And, given a set 

of horn clauses I give a goal clause then what I am asking is whether that whether it is true that 

given this set of horn clauses P this, is never possible. So, essentially that require that essentially 

means that if I include to goal clause in the set of program clauses I am asking whether the whole 

set is unsatisfiable. Now, if this whole set is unsatisfiable obviously so essentially what it means 

is that this existential closure of the conjunction is a logical consequence of the set of program 

clauses. Your, program clauses are essentially going to be a collection of essentially first order 

axiomatizations of some structure given some signature. So, let us look at logic programs from 

so here is a simple here is the there is a logic program is important this because it is allows you 

to do the axiomatization in top down fashion we cannot do arbitrary axiomatizations. Because, if 

it has to be executable then it has to be in some sense inductive I mean cannot be you cannot I, 

mean you still going to be still going to be bock down by induction. You cannot I mean you 

cannot I just like you cannot write functional programming like this.  
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Lets a factorial of x for natural x is a natural is 1 if x is equals 0 is f of x plus 1 divided by x plus 

1 if x is greater than 0. No, I mean it is not suppose to be funny the whole point is that, this is 

non inductive definition of a perfectly correct valid axiomatization of factorial. This, is a 

perfectly valid axiomatization of the factorial function on the naturals. However, it is non 



inductive and as a result this is not programmable. Now, you take you I mean there is absolutely 

nothing that prevents you from you taking a functional definition like this and, converting it into 

relational definition. And, if you convert it into relational definition then you will essentially. So 

I will essentially have two facts one is f of 0 comma 1 this is one fact. And, then the other fact I 

will have is f of x plus 1 y well if y equals if something it will have to be return it some in some 

complicated way. But, the point is it can be any functional definition can also be converted into 

relational definition. But, because of the fact that it is not inductive this logic program will never 

give any where as the usual definition of factorial is actually inductive.  
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Which, makes this f of x minus 1 multiplied by x which converted relationally becomes 

inductive also. And, therefore it is a program because there is a well ordering guaranties 

termination the original definition is not guaranty to terminate that is the basic point. So, your 

logic programming for and axiomatizations are therefore limited by induction by well orderings 

you have to be able to show that, there exists a measure positive non negative measure. Which, is 

guaranty to decrease with every recursive call and it has to be always non negative. So, therefore 

it has to terminate it is bounded below by 0 that is it. 

So, you have to show those things so in fact that is true of all your programs in language also 

when you take your while loops you have to have there is a measure. Which, you may or may 



not have realize if that which guaranties termination of the while loop if does terminate. If that 

while loop does not terminate then there is no non negative measure which decreases or at least 

there is a at least some instance. Where, the measure may not decrease even if It is not negative 

there are some iterations where it will not decrease. So, that is in fact the basic idea of in vary 

look in variants in while programs and there the notion of termination recursion termination so 

and so forth. That, there has to be a measure which I can specify and finite well ordering set 

which ensures that I cannot I will never get out of that set. And, which ensures that which each 

recursive call or with each iteration I step down at least once at least one step. And, that would 

mean in the proof of correctness of your of termination of your programs.  
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So, let us look at Sorting is a so what we are going to do is, so, what is signature here. The 

signature logic program is not as sophisticated as type functional languages. So, it does not 

actually have a type system the type system is therefore the responsibility of the user so you have 

to program all the types as predicates if you want. But, broadly speaking in this program you can 

think of you can assume that the basic hardware is available the signature corresponding to your 

basic hardware is available. So, numbers are available list formation is available cons the cons 

and nil operations are available on lists. So, your signature consists of let us say the integers all 

integer arithmetic operations the most basic integer relational operations relations basic list 

constructors. The cons constructor and the nil constructor which allows you to construct lists of 



numbers and basic equality of course. So, then you are looking at a sorting your restricting 

yourself to that subset of the term algebra. Which, is obtained only from a nil and consing of 

numbers to integer lists.  

So, you are restricting yourself to that signature and you are restrict and you are using the 

relation the relational operations on the. Since, you are using numbers anyway you are using the 

relational operators relational the relations predefined or numbers. And, now what you are doing 

is you are trying to give a first order axiomatization of sorting. So, as far as sorting is concerned 

of course we have to we cannot think of 1 number being sorted we, have to think of lists. But, 

that is something we have to specified some point.  

So, here for the movement assume that x and y are lists, then this essentially says that y let say y 

is the sorted form of x. If, y is a permutation of x and y is sorted at the movement of course. 

Since, we are not specified any these x and y could be anything. The other thing of course is 

standardizing of variables a part means that this x and this y refer to this x and this y refer to this 

y. But, any other x is in the rest of the program are different from those from those x. So, you can 

call this x1 y1 it be like so in fact any prolog system will first do that it will first standardize a 

variables apart by renaming them by generating temporary variables. And, creating a table of 

associations between the generated temporaries and the program use a program or names. So, 

this essentially what we are saying is we would have axiomatized the notion of sort sorting 

provided you can axiomatized the notion of the permutation.  

And, you can axiomatize the notion of sortedness what does it mean for something to be sorted. 

The, nil constructed implicitly is that of lists and what you are saying is that an empty lists are 

already sorted so, this is the fact. So, you can see that there is no condition here so this is fact. 

The empty list is always sorted the one element list so this dot stands for the cons operation on 

lists. Therefore, implicitly this x has type which is often individual not of a list. Whatever, it is 

whatever may be the type you might assign to this nil. Even, if this nil refers to the empty list in 

list of lists then, this x refers to a list an individual in that list of lists and an individual in list of 

lists is a list is simple list. So, what at this movement what you are saying is that any 1 element 

list is sorted. And, then you have an inductive call which says supposing you have list containing 

at least 2 elements. So, this the cons of course is associated. So, this is so assumes that it is a list 

y cons z then x cons y cons z. So, this is sorted provided in that in the space of individual terms I 



mean a, the color coding here is deliberate the violet is because of I am really looking terms in 

that signature.  

And, the green is because I am looking a predicates. This, there is a property of less than or equal 

to which should be which should hold of x and y. If, that holds and if y cons z is sorted this is the 

inductive definition. Then I would claim that x cons y cons z is sorted z would implicitly be a 

list. Notice that, sorted is recursively defined here or rather actually inductively defined. So, z 

would have to be a list it cannot be any division because you will have to consider possibility of 

z being nil that will automatically type it to be a list. And, for the possibility of z being some x 

dot nil or x dot some z prime which will type them all to be appropriate I mean. So, you are 

looking at certain constructors only like so of course. So, the axiomatization of sorted so sorted 

has 3 axioms of which true or unconditional. And, the inductive 1 is conditional and it is based 

on axiomating less or equal to and that is what depends upon. So, now the natural thing is to 

axiomatize less than or equal to. So, of course less than or equal to for any of this is individuals 

because look at the second clause x is less than or equal to y. If, x is less than y where this less 

than is part of the signature on the individuals let say the numbers. So, then every element is less 

than or equal to it itself every individual. So, these two axuiomatize less than or equal to 

completely. And, given that these two axiomatize less than or equal to you have axiomatized 

sorted. And, now in order to axiomatize sort you need to axiomatize the notion of permutation. 

Basically, you list the sorted only if there is a permutation of that list which is ordered which is 

sorted. So, the notion of permutation is very simple the empty list is it is not permutation and 

there is no other permutation. Now, if I have two lists x dot y u dot v so x cons y is a permutation 

of u dot v or other way let say u dot v is a permutation x dot x cons y. If I can if from x dot y I 

can some out delete you and I get a smaller list let us call that z. And, this v is just permutation of 

that z so here again we are looking at inductive.  

So, this v has to be a permute if v is a permutation of z and, in x dot y basically if I put back you  

in in z if i put back you at an appropriately if I can get x dot y. Then, I would claim that x dot y is 

essentially permutation of u dot v. So, this permutation so, the axiomatization of permutation 

realize on the axiomatization of the delete. And, here you have to realize at this delete has to be 

an explicit delete. So, it assumes the presence and deletes it does not ignore if u is not present in 

the list. It, actually gives you an answer of no if you cannot be found in the list. So, this delete is 



an explicit delete and it is essential to have an explicit delete in order to retain the inductive 

nature of our definition. Notice that if, you were not present and you gave the answer yes then 

you are not stepping down the ordering in a well order. I mean the length of the list is not 

changed is non decreasing with each recursive call. The length of the list you are considering in 

each recursive call is not decreasing and, therefore your termination is not guaranteed. So, here is 

where I mean so all these, programming equation is hidden in the axiomatization. So, delete well 

is again an inductively defined thing. If I, have the list x dot y and I am deleting x where x is the 

first element then I just get back y.  

So, the effect of deleting the first element gives me the rest of the list so, that is a fact. Now, if I 

am want to delete x from a list called y dot z and let us assume x is not the same element as that 

of y. Then, what does it mean I had to inductively go down z so, if I can delete x from z to give 

me a list w. And if I can put back that first element from y dot w then, I can claim to have 

explicitly deleted x from y dot z. And, having deleted x from y dot z I get y dot w. So, this set of 

and by the way so, this is of course this delete again is a inductive and up to here is the set of 

program clauses P. In, that sense this is the set that constitutes the logic program per say and 

what you would like to do is to give a something called goal clause like this. So, basically what 

you are doing is this goal clause actually automates a proof and actually determinizes and gives 

direction to the proof.  

So, just think of it you are going to do resolution starting with this goal clause. When, you do 

resolution starting with this goal clause. What, you are going to do is remember that it is this is 

appearing on the right side of the arrow. So, therefore it is actually an negative literal a resolution 

will look for a positive occurrence of sort and then you try to unify them unify the parameters.  

The only positive occurrence of sort is in fact here. So, when you take this set p and this goal 

clause p the effect of doing a finding a resolvant is to unify this x with this set containing 2,8 

minus 1,10,4,2 and that automatically labels x as list let say. So, and it unify so, I have this 

variable x. So, this is this is of course let say I do not know 1,2,3,4,5,6,7,8,9,10,11 let us call this 

x 11. So x 11 is the same as y 1 I mean y one will so x 11 will be substituted for y 1 as part of the 

resolution. So, a substitution is created in which x1 is replaced by this set by this list. And, y1 is 

replaced by x 11 this substitution on the right hand side essentially therefore gives you that this is 

true. This, dedicates sort of this list 2,8 minus 1,10,4,2 comma x 11 can be true. If, perm of this 



list 2,8 minus 1,10,4,2 comma x 11. Because, y is replaced by x 11 first of all so if x 11 is a 

permutation of this. And, x 11 is sorted that is when it would be true. So, this permutation this 

list creating a permutation essentially means trying out all possible permutations of this list. Till 

you get some particular value of some particular permutation which is for which make this perm 

x,y true. Once, you got that permutation put it in this sort I mean you have created a fresh 

substitution for while for this y 1.  

And, this y 1 has been substituted by x 11so, got a fresh substitution x 11 which is that 

permutation. And, that will be verified against the short list is it clear essentially you are going to 

generate all possible permutations. But, you are going to generate those possible permutations of 

this list directed by this list. So, you are only going to restrict yourself to the space of n factorial 

permutations of this list considering there are some duplicate elements they are slightly less than 

n factorial where, n is the length of the list. But, you essentially going to try out all possible 

permutations in some particular order till you get a permutation which is sorted. And, when you 

try out all possible permutations you are going to check for them being sorted through this. So, 

you keep creating fresh substitutions some of those permutations will fail at some point. 

Therefore, you will backtrack some previous substitutions to find out where and try out the next 

permutations and so on and so forth till you get a sorted form. And, this in fact what happens so 

this is logic programming I have actually got a programming log version here.  
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So, This is a selection sort procedure and prologue hope you can see it I do not think I can make 

it even larger than this is it I can just about see it there. Let us see what happens if I huge so the 

basic sorting axiom remains the same. But, what happens is since you are guided by inductive 

definitions. So, this is this remains more or less the same sorted less than or equal to. Here I have 

changed this to a different variables because prologue wants to be different F equals S of course. 

Since, we are dealing with numbers essentially equality defined. So, you are looking at first order 

theory is equality. And, then the less than is of course defined on numbers permutation here 

again prologue requires you to use completely distinct variables on all sites on the left side. And, 

then it will do the unification. So, you get this delete this and delete is defined by this.  
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Here, is an execution I am using something called Yap is probably the latest incardination of 

prologue. And, is probably the fastest prologue engine that currently exists there are things like x 

is b and so on so forth. Which, used previously but they have quite of you bugs in them and 

pretty slow. But, this Yap is very powerful prologue system it is available on I do not know 

whether it is available on windows which definitely on Linux. So, you can take this and this is 

your query essentially this is your GOAL clause that mean what happened plus minus.  

So, here is this so select sort call this is GOAL clause I am calling at with some variable x. And, 

it actually gives me this and gives me this yes keeps giving yes or no answer basically. So, there 

is there is of course one interesting thing about, this the notion of using relations is that unlike 

imperative programming languages or functional programming languages. There, is no notion of 

input or output it is axiomatizing a relation.  
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Theoretically speaking, it should be possible to give a query like this, sort let say Y and let say 

1,2,3,4 there is there is no notion of input or output. There, no notion of an argument and result 

so that a symmetry has gone. Because, just doing first order axiomatization of relations actually 

it is an interesting thing. But, the problem is that this again is not inductively guided. But, 

theoretically speaking you should actually be able to get all possible values all possible 

permutations of this list as a result.  
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But, now I am looking at so, what it will actually it might give is just this sorted version I am not 

giving anything else it does you sure I just it enter now.  

Student: I guess after. (Refer Time: 54:52) 

Look I am not very experience prologue programmer but, semicolon.  
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So, here is selection sort and there are various things but more various interesting things are a 

prologue is essentially for solving constraints. So, you want you want you want to essentially this 

is standard school type problem.  
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You, find digit is for all the letters such that this addition summation this addition some works. 

This is like, one of the standard puzzle problems which keep you occupied for whole day. So, 

here is a simple prologue program where there is this interesting thing here this equal to colon 

equal to, Have you ever counted this? Which, what this does is it takes the left hand side and the 

right hand side for all possible. So, we have before this we have made it clear that we just want 

to assign digit is to this list of letters. Which constitutes and MORE MONEY we have already 

restricted it to these 10 digit. And, we are doing varies assignments of digit is and what this 

whole thing does is it just constrains so, that this equation is true. So, it does a, unification within 

an equation theory basically. So, prologue is very good at that exhaust is such with backtracking 

to get all possible solutions.  
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So, you can this is something you can do and of course there is a, or there are various other 

things prologue has constructed. Which is called functors this is an implementation of double 

needed q’s and i have I chose a data structure which is not often studied. But, you can read 

yourself so you can use constructers axiumatize those constructors and, play with prologue. But, 

the most important thing of course is that, there is a always there is a tuning machine 

implementation of prologue. Which I did not include maybe I mean since so there you can also 

program the tuning machine. Which, essentially is shows that prologue is as powerful as it can 

do all the tuning computer build relations. So, everything that I actually decidable can be 

programmed and prologue.  


