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First-Order Theories 
  

So, what we proved fairly successfully I think is that first order predicate calculus actually the 

Hilbert style system is complete. We, have proved the resolution method is also complete. We 

have proved the tabular method is also complete. And, since essentially the natural deduction 

system can also be derived from the Hilbert style system with that extra existential elimination 

rule and so on so forth. So, the natural deduction system is also complete and so that so we do 

not even bothers about proving the completeness of that natural deduction system. So, and we 

and especially since we showed that even though the existential elimination is not a derived rule 

of the Hilbert style system every proof which involves that can also be converted into one which 

does not use existential elimination. So, the adding that existential elimination as a proof rule 

does not make your system inconsistent that is a first thing the second is that it still complete.  

So, the natural deduction so genesis natural deduction system is also completes so and the tabular 

methods are also complete. So, now what it means therefore is that any logical theory any 

mathematical theory you build on top of a studer predicate calculus is essentially a first order 

theory. And, will see that a meaning of that so there is a first of all there is a limitation of 

expressibility in first orderwhich, I will not expressiveness properties which I will not go into. 

So, as for as the first order theory is concerned its incompleteness therefore depends entirely on 

its aximatization. And, does not depend upon any incompleteness of reasoning within first order 

predicate calculus. So, what we are essentially saying is the reasoning mechanisms of first order 

predicate calculus are complete and they are consistent. So, any incompleteness that you see in a 

theory in a first order theory is essentially used to the axioms that you what are called the non 

logical axioms that you introduce as part of the theory. So, let us just look at some first order 

theories. So, when I go through these examples you will also be you should be able to connect it 

up to whatever you have already done in these theories and see the differences also. So, for 

example so let us start with this actually the simplest first order theory is the theory of the 

directed graphs.  
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Let, us say what does it have the theory of Directed Graphs in its most fundamental form has 

absolutely in its signature it has just one edge relation that is it a directed edge relation there is 

nothing else to it. So, that is what I am calling e here, it does not have any operators and your 

carrier set is usually a set of nodes that is like the model. I mean that is like this structure that is 

good to be brown in color if you like. But, otherwise the only relation you have is directed edge 

relation and in general all the only axiom you have is that the edge relation is irreflexive. I mean 

if, you are talking about simple directed graphs normally when we are talking about directed 

graphs in graph theory they mean simple directed graphs. So, therefore there are no self looks on 

the nodes.  

If, there are no self looks on the nodes then essentially your edge relation is irreflexive there 

could be cycles of course. But, then those cycles have a length of at least two and, so there is just 

this irreflexivity just says there are no self looks on nodes there are no length one cycles. And, so 

essentially what you can derive from here is almost nothing. But, then you go back to what you 

studied about directed graphs in let us say a discreet math codes. You, find that all those 

theorems that you had about simple directed graphs they involved counting. Basically, this 

simple axiom with all the with whatever first order logic axioms first order predicate calculus 

axioms and inference rules. You can derive very little you will not be able to get any interesting 

theory at all. The interesting aspects start with for example counting. One saying one which says 



that the number of n degrees in a directed graph should be equal to the number of out degrees for 

example. The, degree of a node this is for the in degree of a node, the out degree of a node where 

automatically they bring in integers or at least the naturals.  

So, in fact if you see so directed the first order theory of directed graphs viewed in isolation as 

simply in edge relation gives you almost nothing it gives you just essentially whatever, you can 

derive from irreflexivity and the axioms of predicate calculus the proof will of predicate 

calculus. So, nothing else and that is not very interesting the interesting things really come from 

certain combinatorial aspects. So, in that sense this is too trivial and it is a looking at this first 

order theory is not very interesting.  
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From, directed graphs of course we can go to the next Undirected Graphs. So, essentially what 

you have is the signature and again this signature has only an edge relation nothing else. By, the 

way you could have a inequality relation. So, very often I am not going to mention the equality 

relation if there is some strange proof in which especially you want to say that. Two different 

nodes which for purposes you called a some nodes with different names for purposes of 

argument. And, then prove that they are the same nodes that would constitute an equality 

relation. So, I am not mentioning equality here but in general what we are asking for is actually a 

first order predicate calculus with equality always that. Without, that the theory will become 



even less interesting then it would be. So, in the case of undirected graphs for example you also 

have an addition to you have the edge relation which is irreflexive of course again we are talking 

about simple undirected graphs. So, it is irreflexive however there is symmetry that is what you 

want about the edge relation. But, normally in any discreet math both for undirected graphs the 

edge relation is not really thought of as a relation.  

But, it is thought of as a set of two elements set in order to in fact as the undirectedness. But that 

is I mean, within that will take us to axiomatic set theory and so on so forth those are 

complications which we do not require at the moment. So, the first order theory of undirected 

graphs essentially says that you have an edge relation which is connected. And, that is sufficient 

and in fact most of the times when we draw and directed graphs so will direct we essentially 

think of it as essentially as symmetric relation here. So, the interesting thing here of course is that 

you can take this symmetry axiom to be either directed implication like this or, at by condition 

like this. And, there is an exercise which shows the above the equivalent as for as first order 

predicate logic is concerned. But, remember what that means.  
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It means that where is this problem 12. Here, for any binary predicate side for all x, y psi of x, y 

arrow psi of y, x is logically equivalent to for all x, y psi of x, y is by conditional psi of y, x. 

Note, that this logical equivalence does not mean that the corresponding by conditional is a 



tautology. It is not a tautology. We have defined what are tautologies because this equivalence 

cannot be derived only from the propositional axioms and modest pronence. It requires exist 

universal elimination instantiation of the variables x and y again generalization. So, it does with 

it is not a tautology but it is logically valid. So, corresponding by conditional is logically valid 

but it is not tautology that is a so that is what you get in your theory of directed graphs undirected 

graphs so this is all. So, basically from a purely logical point of view there again in the theory of 

undirected graphs most of the interesting theorems has to do with counting comminatory x and 

so on and so forthwhich, means that what you are actually doing is you are actually it means 

essentially you are imposing a structure.  
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The stratification I spoke about is essentially that you have your first order logic axioms here. 

Let us say H1 and then you have essentially Number theory. And, many of the interesting results 

actually come from combinatory x which is essentially number theory. And, then you actually 

have your theory of undirected graphs directed graphs on top of this. So, basically one of the 

things that we implicitly assume our facts from number theory in our theory so whatever you 

learn let us say in discreet math on directed or undirected graphs essentially has a stratification of 

this form. So, otherwise the theory would be quite on interesting and there is very little you can 

actually prove. So, that is what the theory of undirected graphs is.  
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Now, since we were on relations there is a theory of Irreflexive Partial Orders I used times most 

of the other books confused have confused me for many years with their terms. So, I am actually 

using some explicit terms which may not be found in books. So, when I say when the notion of 

they use notions like strictness or total and word total is the very ambiguous word for various 

reasons, totality of a relation is different necessary form totality of an order and so on and so 

forth. So, I am using what I consider to be precise an unambiguous terminology for these things. 

So, we usual less than relation on any structure is an irreflexive relation and it could be a partial 

ordering or total ordering. Though, just as the word total is ambiguous the word partial is also 

ambiguous. So, we have to be very carefully how to use these words.  

So, let us think of this so I am just so there is a single relation it is irreflexive and it is transitive 

in that sense it is different from the edge relation of in directed graphs. However, so but however 

supposing you take the transitive closure of the edge relation in directed graphs. So, then 

essentially that the transitive if you take that as your signature rather than the edge relation itself. 

Then, the theory you get is the theory of irreflexive partial and so that is this kind. What actually 

logic allows you to do? Is to do this clear stratification and clearly compartment less things what 

goes where. And, it allows you to formalize these things therefore so essentially what we are 

saying is you whatever is there in the theory of irreflexive partial orderings is just the theory of 

directed graphs that is it theory of parts in directed graphs. So, if you replace the edge relation by 



the path relation that is it what you have is an irreflexive partial order. Then, of course there is a 

question of being things being a cyclic. So, if there are cycles in the directed graphs then this go 

beyond that. So, we will come to that at some we will come to that at some point but some in 

direct fashion. I am not going to be directly interested in that.  
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Then, you have Irreflexive Linear Orderings. So, this is so very of many books total orderings 

and then very often they do not specify whether the total ordering is strict or not strict. So, there 

is a difference between the less than and less than or equal to. The, less than is an irreflexive 

relation the less than or equal to is a reflexive relation and, in between irreflexivity and 

reflexivity you have a lot of stuff. You have things which are neither irreflexive nor reflexive 

you have relations which are which could be which essentially there is at least one element x. 

Such that x is related to itself and there is at least one element x such that x is not related to itself. 

So, all those kinds of orderings that you can get lie between irreflexivity and reflexivity and that 

is a usually of matter of confusion very often in if you when you do not formalize the theory in 

an precise fashion. So, the notion of irreflexive orderings is essentially this. So, all you have is a 

less than relation which is irreflexive. So, for there does not exist any x such that x is less than x 

that is the you are and this is that is logically equivalent of this irreflexivity. There, is transitivity 

as we had in the case of partial orderings.  



So, if essentially a is less than b, and b is less than c and a is less than c that is what the 

transitivity is says. And, how does irreflexive partial orderings differ from irreflexive linear 

orderings? There, is a tracheotomy law in the case of a linear orderingwhich, is essentially to say 

I mean I am calling this tracheotomy here again books can vary in various ways. But, given array 

to elements x and y there are exactly three possible relations between them. So, one possibility is 

that x is the same as y and for purposes of argument I have considered arbitery x and y. But, they 

could be the same element so if they are not the same. Then, either x is less than y or y is less 

than x. So, that is so this tracheotomy is what makes a difference between irreflexive partial 

orderings and irreflexive linear orderings are irreflexive total orderings are so you call them. The 

notion of well ordering essentially is that of an irreflexive linear ordering which is bounded 

below well orderings in fact. If, you think of it carefully all the proofs that you did using 

structural induction or using the principle of mathematical induction they can all be generalized 

to essentially proofs saying that.  

There, is a well order structure there is a an irreflexive linear ordering which preserves the 

property. You, just go back to all those proofs essentially they bounded below in the case of 

structural induction the bound below is the basis in the case of any induction the bound below is 

the basis that you use. And, it might be unbounded in the other direction so and in the case of 

structural induction actually what you are using is an irreflexive partial ordering. But, what you 

also use is a particular path a linear path in that partial orderingwhich, any ways fine is bounded 

below which has a least element. So, what you are actual well orderings can be generalized to 

irreflexive partial orderings. Because, I can consider each individual path of that partial ordering 

to be a well ordering to be a linear well ordering in itself. So, that is the theory of irreflexivity 

linear orderings.  
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And, then of course you have the notion of Reflexive. So, this is the notion of the Preorders and I 

will implicitly assume that a preorder is a reflexive these in many books are also called Quasi 

orders. Some books distinguish between Preorders and Quasi orders. Some, of them say one of 

them is linear one of them is irreflexive. And, the conclusion is total but the most precise way of 

looking at it is through these axioms you have a reflexive relation. And, you also have a 

transitive relation and that is a Preorder. So, all you are usual less than or equal to relations are 

essentially those of reflexive preorders.  
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But, what you study more often in discreet math course is that of Reflexive Partial Orderings. 

Where, there is an extra property of anti symmetry. This anti symmetry source of much mental 

trauma to students is really this question of identity of objects which have to different aliases. So, 

this we considering first order predicate calculus with equality however, that equality is such that 

syntactically distinct terms are considered different. And, when you say that x is less than or 

equal, to y and y is less than or equal to x, implies x is equal to y. What you are actually saying 

is? That x and y are the same object I mean the edges given them the aliases given that same 

object two different aliases that is it. And, so this is anti symmetric property which essentially 

identifies objects which might have more than one name is what this what gives you a partial 

order here.  

So, partial ordering of course so this is and I will assume that by partial ordering we mean a 

reflexive partial ordering. So, there is a reflexivity axiom there and there is transitivity and there 

is anti symmetry and, of course so the theory of. So, this phi PO in each case this capital PHI 

with a subscript is the set of all axioms which just define the theory. So, all the logical 

consequences of this along, with the axioms of first order predicate calculus constitute the first 

order theory all the logical consequences constitute the first order theory of this structure.  
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Then, you have reflexive linear orderings or remember here that if it is reflexive. Then, you 

actually have a dichotomy law and not a tracheotomy law. Because, I mean that is sufficient that 

is what I am trying to say I mean I do not need a tracheotomy law. So, I have a dichotomy law 

for less than or equal to so that is my notion of a reflexive linear ordering.  
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Now, well then you have Equivalence Relationswhich, are reflexive symmetric and transitive 

and here I mean that is what I am saying. So, here is notice that this equivalence is something 

that might be define external to the set of objects. So, if x and z are equivalent that does not mean 

that they are the same object. So, if should not confuse with the anti symmetry in the partial 

ordering case. So, that is why I use different symbols for this but, what does happen normally in 

algebra is if, you quotient out the structure on an equivalence relation. Then, what you are 

actually dealing with the objects that you are dealing with are equivalence classes. So, if you 

when you talk about an object A you are essentially talking about the set of all objects which are 

equivalent to A by your equivalence relation. And, therefore if you are first so then what you are 

dealing with on the quotient it structure the first order theory of the quotient its structure actually 

has the anti symmetry property.  

If, a and b are equivalent then their equivalence classes are exactly the same classes with the 

same object. So, the theory of equivalence relations is automatically takes you also back to allow 

you to map between, the theory of using just allows you to map between just a first order 

predicate calculus with equality on the quotient its structures. And, separately as the first order 

theory of equivalences. Now, these are some examples of first order structures and what we 

normally do is we just whenever we are talking about a theory in computer science logic 

mathematics or anything. If, you just gives these defining axioms that is it. We, just say that a 

relation is an equivalence relation if it satisfies these axioms and most often we do not even use 

we do not even put the any universal quantifier. Because, we know that validity is preserved only 

under universal closure. So, the universal closure is implicit and this is how we work with it.  
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So, let us in order to do something concrete I thought we will start with Peano’s Postulates. And, 

the theory of numbers we just do some basics of formal now what is known as formal number 

theory sometimes it is also known as formal Peano arithmetic. But, there are subscript of it also 

which are interesting so from decidability point of view. But, I will not get into that but let us 

just look at this these are the Peano’s Postulateswhich, essentially so if you have studied Peano’s 

Postulates somewhere in school or whatever you see that it has basically five postulates. Where, 

the first two postulates 0 is a natural number and if x is a natural number I am using this class 

one now, the successive function usually s is used. But, I since I am using s for let defining sorts 

and so on and so forth as a symbol for sorts. I am using plus 1 which I think intuitively is first. 

So, it is called the successor of x.  

So, this P1 and P2 essentially define the signature they essentially states that there is a 

distinguish constant element called 0. And, there is a unary function called successor and they 

basically these postulates do not do anything rather than define the signature. And, in 

programming terms it is like P1 and P2 are actually define the data type which generates all 

possible terms of this data type of naturals. So, the third postulate essentially says that 0 should 

be distinct from any successor that 0 is not the same as any successor. So, these are completely 

syntactic forms. So, what we are saying is that. Whatever, terms you can generate from P1 and 

P2. You, cannot identify any of the terms generated from P2 with something in P1. If, you were 



to take the theory of Booleans for example. One explicit axiom you would require in any first 

order theory of Boolean though we take it for granted. One explicit axiom you would require is 

that 0 is not the same as one. If, you do not have the axiom then there are models for all your 

predicates on Boolean algebra. Where, there is a singleton single carrier set and truth is the same 

as the false. So, unless you have these axiom the 0 is not equal to 1. You, have not actually 

defined a boolean algebra and in its proper form you have not defined a two element.  

So, that essentially says that your carrier set must have at least two elements it could have more 

of course. But, that it is important to specify the 0 is not same as the 1 after all 0 and 1 could be 

different names to the same object. So, that possibility has to be excluded. The, fourth axiom 

essentially says that your construction is deterministic. And, it also says that this successor 

function this successor can be thought of either as a function or it can be thought of as a 

constructer. When at the time when Peano defined it the notion of a constructer was not very 

well understood since, there was no programming and so on and so forth no computers and so on 

and so forth. But, what the only thing that you could relate to is this syntax of terms. So, all that 

this says is that this successor regarded as a function is an injective function.  

So, which means that if there are two objects not x and y not necessarily distinct from each other 

and if I apply the successor function to each of them. And, I look at the resulting objects and they 

are just same object then the original object must have been the same that is. So, this says that 

the successor function is essentially injective. And, lastly Peano had this I am its important here 

to think of it this way. So, let P be a property the word property here already is ambiguous it is 

not clear exactly what is meant by that. And, Peano left it open he himself was not very clear 

about it. But, he knew that it is important it is necessary to have such a thing if you have a 

property P that is true for 0. And, the property P is preserved under the successor function that is 

actually what your induction step it has. It says that the successor function does not affect the 

property and the property preserved is preserved under successorwhich, is also equivalent in 

algebraic terms to say saying that you can push the successor inside the property itself.  

Then, all the numbers that you have generated all the terms that you have generated from P1 and 

P2 also satisfies that property. So, this is what this principle of induction was which, translated in 

first order let us I will talk about this a little later. So, this notion of a property he left it 

ambiguous but basically A to the any property. And, when you look at the first order theory of 



numbers then this property essentially becomes a unary predicate expressible in first order logic. 

And therefore, it does not include properties of numbers which might be properties of finite sub 

sets of naturals for example, those would be second order properties. So, whereas Peano’s 

original formulation left it ambiguous with the idea that it can be any order actually. It need not 

be first order but the first order induction principle would have essentially a property P specified 

in first order logic on the theory of individuals. Where, the individuals are drawn from the data 

type generating naturals numbers through the 0 and the successor operation.  
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So, let us look at the Theory of Naturals. Will start with so essentially we start inspired by Peano. 

And, you have sort of reformulated into first order predicate calculus so the theory of so here I 

have I do not have induction. I am induction is something I am going to talk about later. So, the 

first thing is that so the first two of Peano’s postulates essentially give you the signature. And, 

there is an equality also so we will assume first order predicate calculus with equality so there is 

an equality relation. And, there is a 0 and successor function plus 1. By, the way I am not written 

the sort of this I should have written it as s arrow s. That will have to be corrected. The, first of 

Peano’s postulates essentially says that 0 is a natural number. There, is something else we need 

P3 that 0 is not the successor of any natural number is what this axiom says. So, for all x this it is 

not true that the successor of the x is equal to 0.  



The other axiom that it is injective is this trivial and then, we need an axiom which says 

essentially that if a sort of a natural number is in successor form it does have a predecessor. And, 

that is what this one says if something is not equal to 0 then it does have a predecessor. This, 

inconjuction with this injectivity property actually ensures that this predecessor is unique but that 

will have to be proven. So, that is one thing that is a let us say that is a first thing you have to 

prove that the predecessor whenever it exist is unique. Then, there is what we want from our 

theory of naturals is that the entire set of even though the entire set of naturals that we get a 

countable model. We, should not have only finite models because, the set of natural numbers as 

we know it is infinite is count ably infinite. And, so in order to ensure that there is a countable 

model you have to essentially say that no successor element these are all distinct. This says that 

for any x so here this is an abbreviation are you able to distinguish the colors. So, this I have put 

plus 1 enclosed in black parenthesis and there is to a black n. The, black indicates the metal 

language it is an abbreviation, for an n fold application of plus 1 for each n greater than c. So, 

essentially what we are saying is.  
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So, I have phi plus 1 black n and green distinct. Now, this one essentially if I take n equals let us 

say 2 then, this essentially is stands for all x I need purple of course but well just leave with one. 

Plus 1 by the way there should be a naught here naught for all x naught x plus 1, plus 1 equal to 

x. So, this for each value of n its essentially an abbreviation for this so this n distinct. So, what 



we are saying is that for any x any number of applications of successor to x cannot give you back 

x. And, this is an infinite collection of axioms there has to be an infinite collection of axioms. 

Otherwise, what you can it opens up the possibility of having finite models. In particular some of 

the finite models is a very popular in number theory are this modulo n for some appropriately 

chosen value of n.  

So, therefore this theory of naturals which guarantees an infinite which guarantees that there are 

only infinite models consists of all these axioms. So, basically that 0 is not the successor of any 

element the successor operation is injective. And, if something is not equal 0 then it must the 

successor of some element. And, for each n successor applied n times to x is not equal to x for 

each x. For each x and for each n successor the nth successor of x cannot be equal to x that 

guarantees essentially infinite tree models. But, there is something else one of the things I did let 

us go back it some point it must be here did we do the isomorphism lemma here. We spoke about 

the distinguish ability of structures. We spoke about isomorphic structures.  
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So, we said that the Isomorphic sigma structures cannot be distinguished by P1 sigma. So, if you 

look at our theory of naturals there are at least two different models. The theory of even number 

is one model and the theory of odd numbers is another model. And, the theory of naturals actual 

the actual set of naturals is another model they are all infinite tree modelswhich, satisfies the 



axioms we satisfies Peano’s postulates for example. And, you can actually go further I mean you 

can just talk about 2 raised to n for example. For each natural number n takes the set of all 

powers of 2 where, your successor is a mixed higher power of 2. Because, though so all these are 

isomorphic structures and any statement that you make about the naturals is also true about these 

structures translated appropriately that was one thing. So, this distinguish ability you cannot so 

basically first order logic cannot distinguish isomorphic structures. Basically, isomorphic 

structures are different only in their names. And, that is an isomorphism which is a name 

isomorphism which makes things and in interpretation which makes them essentially the same. 

So, we had this isomorphism lemma which is essentially said that first order logic is not 

powerful enough to distinguish isomorphic structures.  
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Then, we ask this question which we never answered. Are there sigma structures which satisfies 

the same sigma formulae but are not isomorphic? And, now let us get back to our theory of 

naturals.  
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So, let us just quickly go through this so x raised to plus 1 n denotes n fold application of plus 1 

to x. Says the every non 0 element must have predecessor and this set of natural numbers under 

sigma S is the model of the axioms phi of s. The infinite collection of axioms is necessary to 

obtain models that are accountably infinite. The, axioms 5 plus 1 ensure that there are no finite 

models. What you can do is? If, you supposing if you restrict this set of axioms phi of plus 1 n to 

supposing you restrict this to some instead of n greater than 0. You have 0 less than n less than m 

for some given m. Then, what you essentially get you get both finite and infinite models. You get 

finite models like modulo m models and modulo m is not the only model you can even take a 

modulo two m and so on and so forth. You, get all those finite models plus you do get infinite 

models if you want only finite models which, actually what happens if you done a course on 

number theory in some systematic fashion what you will notice is that at some point after Euclid 

in algorithm it is much more convenient to deal with just modulo and structures.  

And, usually that modulo n is that n is some prime that is usually you do you try to reduce all 

your properties for large numbers from infinite sets to finite sets by doing a division model of phi 

modulo n modulo p for some prime p. And, this is very useful and the whole of number theory 

becomes useful precisely because you can do that there are large number of models which are 

large number of useful theorems especially RSA for example which, allow you to move between 



modulo p structures and the whole of the naturals if you want a whole of a integers if you but 

there is something else coming back to our question.  

So, what is now supposing you want a only finite models. Then, you will have to add an extra 

axiom which says for some m let us say that m successor of x for all x is equal to x. So, then you 

will get all 0 to m minus 1. So, you will get modulo m structures and then you will not get any 

infinite models you will get only finite models. But, if you do not add these axioms but you still 

restrict n to less than m when you have both finite and infinite models. So, coming back to this 

question coming back to this. What we can do even with the current thing is?  
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So, we have a essentially constructed 0 and I do not want to keep writing plus 1 and so on so 

forth. So, essentially we have constructed 0,1,2,3 etcetera the entire set N. And, now what we 

can do is I take this. So, this is my set N generated entirely by this by Peano’s postulates one and 

0, and one or one and two. There, is nothing in those postulates and nothing in this aximitiazation 

that we have donewhich, this is 321 no go back to back to 541, 540. So, between this there is 

nothing which prevents me from adding a new fictitious element. I mean this is a model that 

satisfies this all these axioms. There, is nothing that prevents me from considering an N 

primewhich, consist of the whole of N of course. And, then I am going to add a new element and 

I am going to call this element, I am going to call it 0 prime.  



Then, what do I do I will look at all these and 0 prime this thing allows me to generate successor 

of 0 prime, successor of 1 prime and so on and so forth. But, that is not all that is only from the 

process of generation from this successor function it has to be total so it should be possible to if 

you add an element 0 prime you should be able to generate successor of successors of 0 prime. 

And, if you generated successor of 0 prime and it has to be close from s. So, it is closed but the 

problem is here, if 0 prime is distinct from 0. Then, this one says that it must be successor of an 

element that means it must have a predecessor. So, what it means is that now this axiom 

essentially says that I cannot stop with this. I have to start adding new elements. Let, me call it 

minus 1 prime. And, by the same token I would be generating minus 2 prime, minus 3 prime and 

so on and so forth. Now, consider N prime. N prime is a countable model of this axioms.  

Absolutely, no reason why I should stop here I create an N double. And, which is essentially 

going to N prime union a new 0 double prime. And, this is N prime essentially union u actually I 

am generating all the integer because, of that so let me call that Z double prime. The, point is that 

the theory of naturals does not says you should not generate the integers, does not say that you 

cannot generate two different copies of integers. The, important thing going back to this question 

and what are we saying now? N prime, N double prime, N triple prime whatever you might 

generate they all have copies distinct copies of the integers within them. And, if I have an infinite 

number of different copies of the integers also I still get only a countable model.  

Now, none of these models is either not fit to each other there is no isomorphism between them. 

Because, it clearly want N is a sub set of N prime, N prime is sub set of N double prime that is 

all there is no isomorphism that you can define. So, the notion of first order in 

distinctinguishibility goes beyond the isomorphism lemma there are also non isomorphic 

structureswhich, cannot be distinguish by first order form. So, these and in fact what you can do 

is you take any expansion of the theory of numbers all these models are called the Non standard 

models of arithmetic. So, first order indistingushibility is limited I mean first order 

distinguishbility is limited very limited. What we showed was that it cannot distinguish 

isomorphic structures. But, what this shows is that there are also non standard models that you 

can createwhich, I am not isomorphic to each other what might be called as a Standard Model 

this is called a Standard Model.  



So, Peano’s original assumption that he can generate all the naturals that exact to the naturals by 

these axioms is not true I mean you can generate thingswhich, are not isomorphic to the standard 

model too. And, your first order logic will not be able to distinguish that every property that you 

prove for this theory. Every property that you prove of the naturals would also be true in this in 

these Non standard models. Actually, the problem goes further in the sense that there are people 

who I mean this was the existence of the non standard models came probably in 1920s-30s. But, 

after that there are people who actually create a non standard analysis. So, the entire theory of 

real analysis or complex analysis you can create non standard models for all those axioms. And, 

so that is by the way even if you are mathematics text books do not explicitly say so most of the 

time all your mathematics text books are using some form, of using first order reasoning applied 

to higher order logic. Because, most of those axioms of first order logic are also applicable in 

higher order logic their differences will come in terms of decidability and so on and so forth. 

And, finiteness and infiniteness but otherwise whatever you so all your presentations of things 

and analysis like dedking cuts all the construction of real’s the construction of rational’s so on 

and so forth. 

What, you can do is you can start with number so basically you can start with the naturals and 

create fractions create integers and then create real’s through dediking cuts. But, now I can take 

this trans standard models. And, do the whole thing I mean it is very reminiscent of that thing of 

there is ancient Indian methodological story of the sage Vishwamitra constructing a new 

universe he started constructing a new universe that is like a constructing a non standard model 

of the existing axiom of the Bramha. So, you can actually create non standard analysis and there 

are very many different kinds of non standard analysis possible. And, those have been created so 

notions of continuity which the whole purpose of analysis was to formalize Newton’s 

assumptions about continuity in some logical framework. And, that those aquire a new meanings 

when you create non standard analysis, non standard dediking cuts, non standard real numbers 

from using higher order logics from the naturals.  

And, of course my purpose was my purpose is basically to go through just standard model but to 

show that they do exist non standard models. To show that first order logic is not expressive 

enough for many properties. But, most of our reasoning’s still is first order what we do is we use 

the same reasoning mechanism of first order. When we go into higher orders because, the 



reasoning mechanism of first order are fairly general in any higher order logic your propositional 

connectives have the same kinds of meaning. And, your existential and universal quantifiers also 

have the same kind of meaning you have to instantiate them you to initiate instantiate them and 

then you have to generalize them. So, the axioms of higher order logic will also be the same but 

we keep transcending this borders. So, I stop here we will do more about Presbever arithmetic 

and Peano arithmetic next time.  


