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Lecture - 32 

Resolution and Tableaux 
  

So, we were doing Resolution last time and we something about completeness which we have to 

do. But, so today will essentially do we are also doing Tabular Methods. Because, we have 

already created huge foundations with propositional logic the extensions to first order logic 

therefore are quite simple in nature. But, let us first before we get on to the tabular method let us 

just go back to resolution because of because, there is a issue of completeness. 

(Refer Slide Time: 01:13) 

 

So, the Resolution method are basically tries to take as many clauses as possible with 

complimentary pairs. And, essentially the resolvent that you get by resolving the clauses Ci and 

Cj again some atom p which for which they have complimentary pairs of literals uses unification.  
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So, this is the resolution thing so you take this set of clauses which have p as an atom and the set 

of clauses which have naught p as an atom the terms the arguments may be different. So, what 

you do is you choose this set and try to unify it find a most general unifier for some set of these 

clauses containing complimentary pairs. And, having found the most general unifier you 

essentially remove these clauses and you add this new resolvent Cij prime. Which, is obtained by 

applying that unifier and taking the union of these pairs of clauses. So, one of the things is that 

the resolvent Cij prime that is obtained by this kind of resolution is actually a logical 

consequence.  
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That is something that we fairly that is fairly easy to see you can actually start with a module A 

reinterpret sets of clauses in terms of the propositional connectives. And, fact that they are 

implicitly universally closed and you can do a case analysis and you will get this. So, that was 

one thing if S prime is a set of clauses obtained by a single application of the resolution rule arise 

one. Then, of course S prime is a logical consequence of S so that follows from this Lemma. 

And, if the empty clause is derivable from set S of clauses then S is unsatifiable and this is what 

is known as refutation if you like.  
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So, one of the things that we proved was that and this is a this theorem for Completeness of a 

Resolution Refutation for ground clauses also holds for I mean you can think of it as a proof of 

completeness of propositional resolution. Because, essentially we looked at ground terms in the 

predicates and there was no unification because everything was variable free. And, we just took 

exact complimentary pairs and did the resolution so this is like propositional. So, Res0 stands for 

propositional resolution. So, there is no substitution involved in this. 
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And, this is a theorem that so we can proof essentially by looking at this measure. So, you have 

the G of ground clauses and the empty clause if the empty clause is already in G that is nothing 

to prove. So, that needs a entire set of clauses is essentially unsatisfiable. So, if the empty clause 

is not in G we consider this measure hash G. So, this hash G is just the some of the sizes of the 

clauses minus the number of clauses. So, this n is number of clauses. So, now what happens is 

this measure is 0 if and only if every clause is made of a single literal. And, so now will do 

induction on this measure hash G and so one of the theorems we prove before a Herbrand’s 

theorem was. A, G is unsatifiable if and only if G is a complimentary pair and this resolution 0 

will resolvent of a complimentary pair will be empty clause.  

And, we can go through this induction step and I think we did this. Did we do this? I will not do 

this again. So, this was essentially a proof that propositional resolution refutation is complete this 

I mean refutation is what is complete. This word refutation is what important derivation of empty 

clause so in particular even though you take set of clauses. And, you do a resolution and you get 

a new set of clauses S prime even though, this S prime is a logical consequence of S there is no 

guarantee that resolution is complete for pure logical consequence. It is complete so, what this 

theorem tell us is that propositional resolution is complete for refutation whenever an empty 

clause can be is to be derived. 

So, for pure logical consequence by a direct proof through resolution it is not clear that you can 

prove everything that you want to prove as logical consequence. What is clear is you want to 

prove something as a logical consequence of set of clauses you negate it and, add it to the set of 

classes and then there is a guaranteed derivation of an empty clauses. So, this theorem only 

shows that resolution is not a useful may not be a very useful thing if you want to do direct 

proofs it is useful and complete only if you are looking at refutation again. Let, us an important 

observation which for example I mean there are some trivial examples one can give sort of 

illustrate this. So, let us look at this propositional resolution take this example.  
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So, take this Biconditional. So, p biconditional q so here I am considering only propositions. So, 

there are so this p biconditional q is equivalent to this and comes down to this set of clauses p 

comma naught q naught p comma q. Suppose, now I have a set of containing two clauses and I 

have one pair of complimentary pairs actually they have two pairs of complimentary pairs. But, I 

do a resolution on one of them then, I get the other pair as a single clause. And of course, this 

clause is identically equivalent to the true so all that we have been able to get by a direct proof is 

just that the true is the logical consequence of this one. I mean that it is not clear that you can get 

anything else out of this.  
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So, similarly if you take the negation of this operator which is essentially the exclusive or 

operator then, also you get true as a logical consequence.  
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However, if you have a gold directed method you want to prove specifically that p and q p is a 

logically consequence of p and q. Then, what you do is you actually negate this consequence p 

add it to the set of clauses and then try to derive an empty clause and for that your propositional 



resolution is complete. So, which means all proofs by resolution are essentially guaranteed only 

if they are indirect proofs only if you can prove the derive the empty clause. So, in fact the 

tabular methods are also very much like that we will come to that. But, let me go back to first 

order relation. So, essentially the refutation is the only thing for which we can expect 

completeness. But, then as we know from our original definition refutation is sufficient for 

proving anything that can be proven by direct proof can also be proven by refutation by 

contradiction. So, in that sense this is so will only look at refutations.  
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But, now given that propositional resolution refutation is complete what happens to first order 

refutation that is what we are looking at. Here, is some interesting things so the main difference 

between propositional case and the first order case is the presence of variables. The fact that the 

propositions or that your predicates or parameterized on variables. And, those and the fact that 

you have a sigma algebra of terms which, will be which will act as parameters of the predicates 

and different terms give you different predicates. So, let us look at this so before I proof the 

completeness I want this thing known as a Lifting Lemma. So, what does is this is also 

complicated. You can read it this later.  
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The more important thing is what does this Lifting Lemma says is essentially this. Supposing, 

think I have two clauses let us say C1 and C2. And, there is some and let us assume that these 

two clauses have no variables in common. That, is so if I have two clauses one of the things that 

we can do is standardizing variables apart so we can rename all the variables make them all 

unique. So, there will be a set x1 capital X1 of variables occurring in C1 and a disjoint set capital 

X2 which are the set of variables occurring in C2. And, I perform one substitution and I perform 

two substitutions. So, essentially on C1 I perform substitution theta 1 on C2 I perform a 

substitution theta 2. And, clearly the domains of these two substitutions are going to be disjoint 

because the variables are disjoint. So, I am substituting disjoint sets of variables with disjoint sets 

of terms. Since, the C1 are distinct from the variables of C2 the terms in the substitution are also 

going to be disjoint from the terms in this substitution. So, the disjointness carries all the way up 

to here. 

So, that is what is to first is two conditions specify the free variables of C1 are disjoint from the 

free variables of C2. The free variables of theta 1 C1 are also disjoint from the free variables of 

theta 2 C2. Supposing, think I guarantee these two conditions.  

If, I can guarantee these two conditions and then I can find resolvent C prime 1 2 through some 

substitutions through some unifiers sigma this sigma unifiers theta 1 C1 and theta 2 C2. 



Basically, what we are saying is you find some atom p you find complimentary pairs p with 

some terms of x1 involving variables of x1 occurring in theta 1 C1 naught p with let us say with 

variables of x2 occurring in theta 2 C2. And, you are able to do a resolution a single step of 

resolution and you will obtain let us say at a clause C prime 1 2. So, basically what we are saying 

is all the other the rest of C1 which was not involved in the resolution in rest of C2 you will do 

the substitutions given in sigma. Now, since these two are disjoint in their sets of variables what 

this lemma just says is that. It is possible for me to find a unifier row. Which, will resolve these 

two clauses without doing the substitutions. It will give me some C1 2 and it is possible for me to 

get the C prime 1 2 through another substitution term. 

So, what we are saying is having done these substitutions and then realizing that there is a there 

are complimentary pairs and so the resolution step possible is equivalent to finding a resolvent 

here. And, in order to get this I find an appropriate substitution term. So, what you are doing is 

you are lifting this resolution step to the one with variables. Note that C1 and C2 are variables in 

that I mean where as in particular supposing, here I have not made any assumptions about 

ground terms. But, in particular we have to relate it to the completeness of resolution for ground 

terms which is what we had proven before. We are going to use that in order to prove 

completeness. So, in particular theta 1 and theta 2 are ground substitutions. Then, this sigma is 

essentially an identity substitution I mean because you are essentially doing propositional 

resolution. 

So, this is equivalent therefore this can be lifted to doing a resolution on terms of variables and 

then doing a ground substitution term to get (Refer Time: 17:27). So, what this if theta 1 and 

theta 2 are ground such that theta 1 C1 and theta 2 C2 are variable free then you can do only 

propositional resolution. But, whenever that is possible what you are also saying is it is possible 

to do a predicate logic resolution a first order resolution. And, get the same effect by doing an 

appropriate ground substitution term. So, this is what the theorem says. This is what this lemma 

says. And, the proof of this lemma I think I am going to leave it to you to study on your own it is 

an important lemma. You have to use the fact that these have disjoint sets of variables these also 

have disjoint sets of variables.  
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So, it is a fairly general purpose lemma but we are going to use it only when the case when theta 

1 and theta 2 are ground substitutions that is enough for us to prove completeness of resolution 

refutation. So, I can superposed those two figures these two figures can be superposed to yield 

something like this yield a figure like this. So, a figure like this will represents a lifting lemma 

basically.  
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So, now the essentially the lifting lemma helps us to use the completeness of resolution 

refutation for ground clauses. And, lift it to clauses with variables in that and by standardizing 

variables apart we can guarantee those two conditions of lifting lemma are satisfied. And, of 

course any set of clauses represents a consumptions the universal closure of each clause. One of 

the things we did was.  
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We showed that you know actually a set of clauses that represents a universal closure of an and 

of all the clauses. But, that is equivalent to taking the universal closure of each clause separately 

so that will have a smaller number of variables. And, taking a (Refer Time: 19:48) in that so we 

will use basically in this.  
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So, the lifting lemma guarantees so that theta 1 and theta 2 are ground then there is there are 

there exists corresponding ground substitution tow which will produce the same effect as the 

lifting lemma. We have Herbrand’s theorem which shows that a set phi is unsatisfiable if and 

only if there is a finite sub sets of ground instances of phi which is unsatisfiable. So, what we do 

is to prove completeness of resolution refutation we just consider only a finite set of ground 

clauses, from which the empty clause may be derived. So, assume that let us go out of the 

theorem is just that. Suppose, phi is the set of clauses which is unsatisfiable there is no model 

which means then what we are saying is the empty clause can be derived in first order resolution. 

And, how we are going to do it? We are going to use Herbrand’s theorem.  
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And, essentially what we are saying is that first of all we are going to standardize the variables 

apart. And, by Herbrand’s theorem basically what we are saying is that you can finite may be a 

finite or infinite set I do not care. Whatever, it is that ground instances of all those clauses is 

going to be some infinite sets. But, if phi is unsatisfiable then by Herbrand’s theorem there is a 

finite subsets of ground clauses which are also unsatisfiable. Now, if that finite set of ground 

clauses is unsatisfiable we know from the completeness of resolution of ground clauses then the 

empty clause can be derived from them ground clauses. Now, all that we need to do is take that 

finite set of ground clauses I am calling them gCi. Each of them have a parent in the original set 

phi through the ground substitution theta i. So, take only those clauses Ci and now apply the 

lifting lemma. So, what you are saying is only those that subsets of clauses so there is a finite 

subset G. Which, is refutation which derives an empty clause completely ground you take that 

parent clauses all the Ci’s. And, the lifting lemma guarantees that I can find a most general 

unifier and a resolvent. And, I am and the lifting lemma guarantees that all that provided that 

satisfies disjointness conditions which I can fulfill by standardizing variables apart. 
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And, once we do that essentially we can by induction on the number of steps of ground 

resolution. For, each step of ground resolution you can apply the lifting lemma and I am not 

going to go through the details of that. But, here is the simple illustration where, there are two 

steps of resolution so the blue ones are all the ground ones. So, let us assume that C prime 1234 

is the empty clause. And, it is derived from these 4 clauses C1, C2, C3 C4. You take let theta 1 

theta 2 theta 3 theta 4 be ground instances of all these clauses. Then, what you are saying is that 

there exists some resolvent sigma 1 2 C1 and C2 here there exists another resolvent sigma C 3 4 

between these two. That will give you C prime 1 2 and C prime 3 4 then, there exists a sigma 

1234. Which, gives you this C prime 1234 let us say is a empty clause.  

Now, the lifting lemma in each case guarantees these red lines. So, it says that it is possible to 

find the resolvent C1 2 without doing any substitution. Such that if, I want C prime 1 2 there is a 

ground substitution tow 1 2 give me that. And, similarly in this case and this so look at this C1 to 

C 3 4 C prime 1 to C prime 3 4, C prime 1 to 3 4 they are also satisfy condition of the listing 

lifting lemma I can standardize a variable apart. And, so I can apply the lifting lemma again and 

that guarantees that I can find unifier a most general unifier row 1234. And, a ground substitution 

tow 1234 which should be my empty clause. 



So, from propositional resolution we can actually derive first order logic resolution but only for 

refutations. So, the completeness is only for refutation though it is clear that all the clauses that 

you get are actually logical consequences of original sets of clauses. So, that means resolution is 

first order logic.  
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Now, the some of the other things that we have to do is first off all we have to look at tabular 

methods and we have to look at the completeness of Hilbert’s style proof system. I think those 

are two important things that we want to do. We did propositional tabular what about first order 

logic tabular. In tabular are also similar to resolution in the sense that again you are trying to 

prove the unsatisfiability. So, what happens a tabular is a tree we have these various tabular 

rules. 
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Which, essentially gives you a branching with elongation and branching rules. So, this is an 

example of a branching rule and this is another example of a branching rule then these two are 

also branching rules. This is an example of an elongation rule and so is this. And, what we did 

was. We started with the set of clauses get on elongating as much as possible. And then, if 

necessary to be so we broke down the clauses based on their syntax on this structure of this 

syntax tree of the are not clauses of the formula. So, the important thing here is that in general so 

the tableau method in principle because it works on the root of the root operator of the formula is 

bit like natural deduction. The natural deduction had introduction and elimination rules the 

tableau just allows you to break up break the formula according to the decompose the formula in 

terms of the root. So, it applies on the root operator and so in that sense it is similar to natural 

deduction.  

But, on the other hand it is similar to resolution because basically unsatisfiability is what you 

prove. So, you are looking for a closed tableau. A closed tableau is one is a tree is a tableau tree 

in which all the paths are closed. And, a path is closed if you if along the path you can get a 

complimentary pair. So, if all paths have complimentary pairs then all paths are closed and the 

tableau cannot be extended any further basically. So, as long as there is no complimentary pair 

the conjunction of all the formulas in a path is satisfiable is assumed satisfiable. So, it is similar 

to resolution in the sense that you are going to look for finite tableaus which are closed and the 



tableau is closed if all the paths are closed. If, even a single path is open then the tableau what 

you have got is an assignment satisfying assignment.  
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So, one of the advantage is that the tableau had and continues to have for first order logic is 

really that resolution required a huge amount of initial paperwork to be done. You had to take 

these formulas convert them into pre next normal form. Then, take the formula take the body of 

the pre next normal form convert it into conjunctive normal form. And, that conjunctive normal 

form might often involve distribution of or over end. Which, can expand the body and in that 

sense there are certain natural disadvantages of resolution which are not hidden when we look at 

resolution only in terms of sets of clauses. So, if you are given only sets of clauses then that is 

fine resolution is fine. But, otherwise there is you basically create a through pre processing you 

create a mammoth formula this is something that the tableau does not require. Because, the 

tableau does not require any of these transformations it just naturally breaks up formulas 

according to their operators. 

So, it has these advantages over resolution and it is since it is it works on the syntax of formulas 

on the root operator it is almost like natural deduction. Natural deduction has introduction and 

elimination rules for each operator. Where, as tableau keeps on breaking up operators it just 

keeps on breaking up the formula based on the root operator. So, it has essentially only so it uses 



essentially only the elimination rules of natural reduction. But, it uses a branching which a 

branching tree and so otherwise it is a lot like natural deduction and it is a lot like resolution. It is 

a it is like natural reduction because it is totally syntactic. And, it decomposes formulae’s into 

some in terms of their sub formulae. It is like resolution in the sense that you looking for a closed 

tableau you are looking for ways to close all the paths. 
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So, that tableau rules therefore it is they are not surprising at all. We want to look for ways of 

breaking up the each quantified formula and you want to negations of quantified formula that is 

how the tableau works. So, we have two rules the equation so there are two rules so and these 

two rules there are these four rules. And, these four rules are essentially like your universal 

quantifier elimination and existential quantifier elimination. Because, by Demorgan’s law the 

negations are also duels they dualise. So, you take this so you have for all x phi and basically 

what you are saying is that for all terms t, tx phi is something that should follow from for all x 

phi. In the case of existential quantifier essentially the same restrictions hold as for existential 

quantifier elimination in the Hilbert’s style systems. So, there was a notion of a scope adding a 

creating a new and fresh constant so this A here is very much in that spirit. So, this A has to be a 

fresh constant. Which, does not occur anywhere in the path in that path in which you are doing 



this existential quantifier elimination. So, it should not have occurred before so this has to be 

fresh. 
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So, I mean this is you remember these are these restrictions on existential elimination which we 

had for the Hilbert’s style system. So, in each this constant symbol A has to be absolutely fresh 

in net scope in the case of the tableau. the, scope that we are talking about is the path which is 

open at the moment which you are extending with something more. So, no parent along that path 

no ancestor along that path should have had an occurrence of A. If, you are applying the root the 

negation of the universal quantifier is very similar to the existential quantifier. So, the notion of a 

fresh A happens here to I mean it is after all a dual and the notion and this of course is models 

the same as the universal quantifier. In particular when you looking at it as the universal 

quantifier this is for all terms t. For every term t this actually holds what in the case when we did 

the Hilbert’s style proof system.  
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It did not matter to us really notice that this is essentially for all terms t that are admissible in x. 

Where, as if you are looking at refutation which is what your tableau does for closure then if the 

tableau path closes for one particular choice of their term t it might close it may not remain 

closed for all possible terms t. Because, there is a combination of there might be combination of 

existentially quantified formulas and universally quantified formulas. Because, of which you 

might have to reuse this root we are not doing direct rules we are doing a refutations actually. So, 

let us look at an example so, this is so what I am trying to say is that this for all and not there 

exists may have to be applied several times before unsatisfiability can be proven.  
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And, here is an example which illustrates that take this set, naught of C is a constant let us 

assume that C is constant in the signature that is why I have not written it in red I have written it 

in violet I mean let us assume C is part of sigma. So, I have naught p of c and f is unary function 

symbol I have p of f of f c. And, then I have for all x p x or naught p f x and now this set is 

unsatisfiable. And you, can prove it by some other means through unification through resolution 

whatever but let us look at a tableau proof and what it involves. So, we just use elongation 

initially so we first list out all the so this is tree by the way I know it does not look much of tree 

but it is a tree. So, here this horizontal line is where the branching takes place so this p of c or let 

us take this for all x p of x or naught p f of x I choose instead of I choose to instantiate this 

universally quantified formula with c for x.  

 

And, if I choose to do that then I get p of c or naught p of f c. So, this or is requires a branching 

rule so you assume p of c and you assume naught p of f c. But, p of c of course contradicts this 

naught p of c on the path and so this path is closed that is what this red square is supposing to 

indicate that the path is closed. So, now you take this naught p of f c this path is open. Now, I do 

another instantiation of this for all and this time I instantiate it instant replace x with f of c. So, 

then I get p of f of c or naught p of f of f f of c. So, p off c and naught of p of f c here, a 

contradictory this or implies a branching again. And, this p of f c contradicts this not p of f c. So, 



this path closes and this naught p of f f of c contradicts this p f f of c and so this path is also 

closed. 

So, there is a difference here that in a propositional tableau method we actually scored out any 

formula that been used all those all those formula were well essentially disposable if, you like. 

Once you decompose the formula you did not require the original formula but here we see the 

first important reference. That, is a universal formula cannot be discarded after instantiation it 

has to be reused all other formulae can be discarded once they have served their purpose. Once 

they have been decomposed. So, for example once this branching has taken place this p of c or 

naught p of f c is useless and, can be scored out. But, and similarly this p of c or naught p of f f c 

can be discarded once I have done this branching.  

 

Because, they are essentially proposition but all you know all quantified formulae will have to be 

reused. Actually, what happens is that it is only for all x and naught of there exists x which are 

both only universal quantified formulae may have to be reused before you can prove that the 

entire tableau is closed. If, this supposing instead of naught p of c I had just p of c. Then what 

would happen is this, universal quantifier would essentially give you all I mean there would be 

an infinite path in the tableau would not close.  
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So, if were to take if I were to take this set p of c well p of f of f of c and for all x p of x or 

naught p or is this f or then some parts of the tableau will not close. But, if you are looking at a 

complete tableau then, in that complete tableau you will essentially have to have all instances all 

ground instances of this formula. That, is like taking the entire Herbrand universe and that is like 

elongating with an infinite number of formulae because afterwards for all x it is like an infinite 

tree. And, your if there is a constant if there is at least one constant then your Herbrand universe 

the set of all ground terms that are possible is an infinite set. So, this essentially encodes an 

infinite possible path in the tableau.  

 

So, now here so that is so the only tableau's under quantification under universal quantification 

or equivalently negation of existential quantification. Though, only finite tableau's are those 

which are closed all the other tableau's. So, for any set of any set phi so, in the propositional case 

because of the fact that we did pure decomposition. And, your formulas were essentially like 

toilet paper use once and throwaway. So, you had only finite tableau's and those finite tableau's 

could have for finite set of formula you had only a finite tableau and it was always finitely 

branching of course. And, so you had only a finite number of paths some of those paths may 

have been closed the other paths would have been opened.  

 

But, in the case of universal formulae you have the possibility of actually having an infinite path. 

And, this universal form universal formula in an open in a tableau which is in which all paths are 

not closed essentially encodes an infinite tree path for, all possible instances of that you can have 

for x. This, I do not have any more slides but do some example. There is one quick example I 

can do one of the things that we did in the if you remember I do not know how well you 

remember but there is a tendency to understanding to also the volatile. But, there is something 

called something called slim tableau. 
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So, there is there is the notion of I mean a heuristic you normally apply is that you postpone the 

application of branching rules as far as possible. And, use elongation give priorities to elongation 

rules. So, you first do all the elongation rules possible and when the tableaux got only branching 

rules possible that is when you do branching so, you get Slim Tableaux because of that. In this 

particular case this is essentially a huge elongation if you like so it encodes a huge elongation 

that is not a serious issue. But, this huge elongation comes in the way of finding closure I mean 

after all in what order are going to this in a put in all the do all the instantiation this is the 

question. If, you notice here there was some guidance which there was guidance which this 

constant gave. So, if you were to take a proof like this so let us take a refutation proof because I 

want only a finite tableau.  
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So, let us take this simple thing for all x p of x no function symbols two atomic predicate 

symbols unary one logical consequence of this is for all x p of x. And, I am going to do an alpha 

renaming just to keep all the variables separate I mean it does not really matter actually it does 

not matter at all but, anyway let us do this. So, if you had to prove this so clearly tableau proof 

for this would start with taking the set. This, set the set is going to before all x p x arrow q x and 

then the negation of this. So, that means not of for all x p x arrow for all y q y so the negation 

rule essentially this is negation of arrow I mean that. So, there are those propositional tableau 

rules.  
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So, you take negation of arrow so it elongates it so it elongates it to for all x p of x and naught of 

for all y q of y so this thing is essentially propositional. So, essentially this can be discarded 

because we have now applied this elongation rule. Now, you have a question of how to proceed 

with this tableau. And, you the choice of instantiating this universal quantifier this universal 

quantifier or this essentially existential quantifier. These two universal quantifiers provide more 

guidance at all. So, if you want to slip and finite tableau you have to first instantiate this so if you 

instantiate this then what you get is essentially a fresh constant a, you going to use a fresh 

constant a.  
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And, I am going to write it simply as naught q of this is this also I will use a green for the a. So, 

this is a new fresh constant and this is what I would get. But, a of course you can think of this as 

being disposable essentially it is the equivalent. So, the ones which are not disposable that the 

universally quantified once and, therefore the negation of existential quantifiers. So, once you do 

this a gives you an guidance as so how you going to initialize these. And, so essentially what you 

are going to do is you going to get p of a here as one instantiation. And, then you going to get p 

of a q of a arrow p of a q of a. And, then and then you going to go through this now it is becomes 

propositional this will branch into essentially.  
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So, this will branch essentially into not p a here and q a here. So, now what happens is so this 

because of this and because of this both the branches close. And, so you have you have closed 

tableau so this one so in addition to the fact that you postpone branching as much as possible. 

This, it is not just slim tableau it also ensures finiteness if it is indeed unsatisfiable they the 

instantiation of existential quantifier. And, therefore also of naught of the negation of the 

universal quantifier should be done first to provide an appropriate guidance. That, is to what 

should be instantiation of the universal quantifier. So, it is I could have of course for example I 

could have had here formula like f of y or g of y for instance. Supposing, I had f of y or g of y 

somewhere something like that then this would give me naught q of f of a.  

 

But, that the instantiation I would have to do on this there would be f of a for x rather than for a 

for x. So, it gives that guidance that guidance has to be program which is notice that, we do not 

have unification. So, if you use the existential quantifier to give you the appropriate guidance 

you can just take that terms from the existential quantifier instantiation and use them as 

substitution. So, universal quantifier and then do a propositional tableau and so you get not only 

a slim tableau. You, also get a not a guarantee but possibility of a closing the tableau early so 

that is far as tableau is concerned.  


