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Lecture - 31 

Resolution: Soundness and Completeness 
  

So, today I will we will look at the Soundness and Completeness of the resolution method. But, 

before that let us just you recap what we I have done earlier so one of the things we did was that 

so this example was the best. So, we showed that you could actually derive logical consequences 

from resolution and that is what.  
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So, this was like a direct proof of this property of symmetry from reflexivity and euclideaness. 

So, this was so this was a direct proof which is which essentially the idea is that the resolvent 

should be a logical consequence of the two parent formulae from which it is derived.  
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The second thing we did was Refutation. So, what you could actually do is you could prove the 

symmetry by assuming the negation of symmetry. 
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And, doing the clauses and if you start with and then you could have several possible ways of 

just using resolution to derive an empty clause so and this was called as refutation. In general of 

course, one of the early properties we saw about proof theory if you look at resolution as a proof 

rule. You have to realize that the derivation of the empty clause I mean in all the examples that 

we have done we ended up with just the empty clause. But, in general it possible that you can 

you have a whole lot of other clauses too in the set. So, one of our early theorems about formal 

theories said that if you could derive something from gamma from a set gamma and delta was a 

superset of gamma. Then, you can derive the same thing also from that so in the case of 

resolution what that means is that. If, you start with some larger set t of clauses then beside the 

empty clause you will also have some of those clauses hanging around. But, the fact that you 

have a set of clauses in which one of the clauses is an empty clause implies that you have 

essentially derived a contradiction. Because, the set of clauses intuitively represent a big 

consumption of a formulae and the empty clause represents the formula false basically.  

So, you have to be able to make the empty clause a member of the set of clauses that you derived 

then that is sufficient as soon as you can do that you have essentially done a refutation. A 

refutation means that you are essentially trying to refute the claim refute some claim. So, that is 

why you take this negation and that is it is equivalent to a proof by contradiction. So, both logical 

consequences and refutations can be done through resolutions. So, that is in fact what often 



happens is that resolution in general tends to be more deterministic if you use it as a refutation 

than as a logical consequences. Because, it has the same problems of trying to guide the proof 

towards the logical consequence that you want which is something. 
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We did here somewhere I mean where so from transitivity and symmetry you have to do you 

have to guide the proof in such a way that you take some appropriate most general unifier which 

unifies exactly the kinds of things that you want in order to get this conclusion. Whereas, if you 

did a refutation and proof is more deterministic you can just take some whatever you whatever 

most general unifier you can find. And, just do a blind derivation then continue to find a most 

general unifier just till you somehow get the empty clause so that is in some sense more 

deterministic process. And therefore, more useful sometimes for theorem proving. So, now what 

will do is will do more meta theoretic aspects. So I will try to do to the soundness and part of the 

completeness the rest of the completeness I will just put up this as slides. So, the most important 

theorem on completeness I will put up on this as slides. And, so that then the next which you can 

study for yourself but after the vacation basically when we will worry about the completeness of 

the Hilbert system which is still pending and will worry about undecidability and may be formal 

theories like number theories or axiomatic set theory.  

You know we have to do some applications.  
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So, we shall start with Soundness.  
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So, we have this resolution method which is with all these conditions. So, whatever those 

conditions are assuming those conditions hold you have you derive sets of clauses after using 

unification algorithm which gives you a most general unifier that most general unifier is 

important for the purpose of completeness but, at the moment we are just dealing with 



soundness. So let us all that we are saying is that this Cij prime that was defined. So, this Cij 

prime which is defined here is called a resolvent. This resolvent is a logical consequence of Ci 

and Cj where Ci and Cj are the two clauses against which the resolution was done.  

So, this is what we will said out to prove today one corollary of this is that actually there is 

something you can state a theorem essentially. For which this Lemma is important but, 

essentially we could have rewritten this lemma as a full theorem. We says that the S prime that 

we derive from S is a logical consequence. S prime is a logical consequence of S. Where, S is the 

set of clauses in which Ci and Cj are some member clauses. And Cij S prime is S minus is so this 

this denominator is S prime. So, basically what we are saying is that resolution preserves logical 

consequence preserves validity. So if, S is valid then S prime is also valid so in fact it might be a 

good idea to treat this lemma as essentially saying that S prime is a logical consequence of S 

though we will focus on only a single step of resolution. So, that it most of that it is clearer.  
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So, we just assume that we have these things as given in that resolution rule we have some we 

have Ci some Ci prime union some p of si prime. Where, there are various different set vectors 

of terms si prime and then there is Cj contains Cj prime union naught p of tj prime. Where, there 

are various kinds of tj primes vectors of triples all depending on the arity of p from the examples 

it is clear that. Ci prime could have other occurrences of p it could also have occurrences of 



naught p with other terms. Similarly, Cj prime could have occurrences of p and could have 

occurrences of naught p with other terms.  

All we are saying is that there is some unifiable set of subset of terms in Ci and Cj such that the 

terms you select from Cj prime are complimentary to the terms you select from Ci. And, of 

course there free variables of course they are all we standardize the variables apart. So, all the 

free variables are distinctly named renamed so there are no so the free variables of Ci and Cj are 

empty. And, this set p si prime and p tj prime this chosen’s set is a set of unifiable literals. 

Which, the unification algorithm gives us some for which the unification algorithm gives us 

some substitution. 
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So, one thing is so supposing so will do this proof of logical consequence we need to show that 

Ci C prime ij is logical consequence of Ci and Cj. So, going strait by definition let us just assume 

that there is some sigma algebra A which is a model of Ci and Cj. Effectively that means, that it 

is a model of each of them the universal closure this should be this should this is an or. Or of all 

the literals in Ci and this is a or the or of all the literals in Cj. So, it is individually if it is a model 

of this then it is in model of the conjunction universally closed. But, of course they have distinct 

free variables so the universal closure can be distributed redundant universal universally closed 

variables can be removed from the individual clauses. And therefore, the universal closure of this 



and the universal closure of this are both satisfied by it and since this is a universal closure any 

substitution that you have is also satisfied by this way. 

So, A is a model of any substitution theta of or of Ci and theta of or of Cj if further it has unifier 

of L. Then, essentially what we are saying is that this set L are unification algorithm keeps 

collapsing the set. I mean set of all distinct terms after unification till there is exactly one term 

left. So, if theta L is a unifier then let us say it gives you a single term lambda then when you do 

this substitution theta essentially a lot of those terms get collapsed. So, what you actually have 

therefore moreover this theta goes through goes across to Ci and here goes across to Cj and the 

result of unification is that all those p si primes which were chosen become a single term lambda. 

All those naught p tj primes that were chosen become a single term lambda bar.  

So, that is what happens here so I can push the substitution in and essentially what I get is that A 

is a model of this disjunction. Where, all those p si primes have all gotten collapsed because of 

the substitution theta into a single term lambda. And, then the substitution is applied on the rest 

of the clause Ci similarly here, all those terms naught p tj primes have all gotten collapsed into a 

lambda bar and theta is applied to rest of the terms Cj prime.  
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Now, what we are essentially going to show is so you take this theta Ci prime and theta Cj prime. 

So, basically let us assume that there are some literals a some set of literals capa i prime and 



lambda j prime. So, there are k literals in theta Ci prime and l literals and theta Cj prime. And 

what do they represent? So, depending on the values of k and l we actually have this kind of a 

case analysis. Now, I had to contact the table so that it fix in the screen but I think you will be 

able to see most of what is there so when you have a when k and l are above 0. Then, what it 

means is that your theta Ci prime is empty and theta Cj prime is also empty. Which means, what 

you have here is just lambda and lambda bar which are a complementary pair and they derive the 

empty clause. So, this union which is what you are this is your C prime ij though of course notice 

that I have not actually taken theta to be the most general unifier this lemma holds for any unifier 

it does not matter.  

So, essentially this is like union is your C prime ij the resolvent and you can see that this empty 

clause is actually derivable and is not just derivable from these two. But, is actually a logical 

consequence of lambda, lambda bar it is like an and of lambda, lambda bar. And, in the other 

cases so if you were to take the case when k is 0 which means that theta Ci prime is empty. And 

therefore, you have only lambda there whereas l is non 0 then what will you have is. So, you 

essentially you have lambda bar or that entire clause represents an or of literals or of all these. 

And lambda and lambda bar or all this essentially is logically implies lambda 1 or 2 lambda l. 

And this is so essentially these are validity preserving a logical consequences. I mean, so validity 

is preserved almost exactly like so you mean we have to think of it this way they look 

propositional. But, we know that all propositional validity is also work for universally quantified 

first-order formulae. So, they are you have to so these are these are actually universally 

quantified on their free variables. But, validity is preserved over that only because of the 

universal quantifier. So, these all these propositional logical consequences also work for 

universal closures of first-order logic formulae and they preserve this validity. So, in this 

particular in the case of when k is non 0 and l is 0. I still have lambda or capa 1 or dot or capa k 

but that or is equivalent to lambda bar arrow this and here I have lambda bar.  

So, by modus ponens I actually have capa 1 or dot capa k and when both k and l are non 0. I 

prefer to write it this way so again I have lambda or capa 1 or capa k. But, that is logically 

equivalent to taking the negation of capa 1 or dot capa k arrow lambda. And, this is lambda bar 

or lambda 1 or lambda l. But, then that is the same as lambda arrow this and then we have the 

transitivity property of the arrow. So, which allows us to essentially claim this so this is logically 



valid and it remains logically valid even when it is universally closed. And, therefore it preserves 

logical validity. So, in each case what we actually have is that this set lambda union theta Ci 

prime lambda bar union theta Cj prime it has theta Ci prime union theta Cj prime as a logical 

consequence. And, a universal closure does not change a logical consequence and therefore what 

it means is that your A, a model A that you started off as a model of Ci and Cj is a model of C 

prime ij. And, therefore it is a logical consequence because A was an arbitrarily chosen model so 

for all such models which for all models of Ci and Cj you have shown that there also models of 

C prime ij. And, therefore it is C prime ij is a logical consequence of Ci and Cj so what this 

essentially says is so now in particular if you derived an empty clause.  

Then, what you are saying is if you derived an empty clause from Ci and Cj then you are 

essentially saying that first-order logical consequence of Ci and Cj. And, so that the universe 

holds the false set has of course no models therefore the original parent would also not have any 

models. Which, is what we have in this corollary if the empty clause is derivable from a set S of 

clauses then S is unsatisfiable. And, this lemma can of course be written more generally as if S 

prime is obtained from S by a single application of resolution. Then S prime is a logical 

consequence of S and therefore repeated applications preserved logical consequence remember 

that. Now, we have moved away from logical equivalence in two ways. One in if you look at 

arguments in general the fact that we convert arguments into sets of using a skolem conjunctive 

normal form means that we have moved away from logically equivalence. And, remained only in 

equi satisfiability of models. And, your resolution does not preserve logically equivalence it 

preserves logical consequence. So, what it means is that you cannot apply even if it were feasible 

in other ways you cannot actually go through the derivation backwards but that is true of any 

proof system actually. It preserves only logical consequence there is a way of looking at proof 

system is that if what a theorem gives you only a logical consequence of your axioms. Then, 

there is a way of looking at it as information theoretically a theorem has no value it does not 

provide any fresh information. So, that is where that is a different philosophy let us not get into 

that. So, we are looking at so essentially therefore resolution also preserves logical validity. So, 

if your original set was logically valid then, any resolvent will also be logically valid. And, 

definitely it preserves logical consequence and you take the contra positive and that essentially 

justifies refutation very much like proofs of contradiction. So, if the empty clause is derivable 

from a set S. Then, that derived S prime does not have a model and therefore S does not have a 



model therefore s must be unsatisfiable. So, I do not actually have any more slides but will go 

through a proof on this. So what i will do now is I will justify essentially a completeness. So, if 

you look at this. This says so look at this corollary so what will do is.  
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So, will just say that refutation itself is complete and, what I mean by that is essentially this is 

this corollary is like the soundness for refutation. If, I can derive an empty clause using 

resolution from a set S of clauses then, their original set S is unsatisfiable. And, what I need to do 

is to show that if S is unsatisfiable then the empty clause can be derived. So, this is what is going 

to be a completeness theorem. However, at the moment what I am going to do is restrict this S to 

only ground clauses. So, this is like a preliminary lemma for ground for and it some sense also 

justifies resolution the resolution method for propositional logic. Because, it is trivially follows 

that propositional resolution is complete for propositional logic. So, but let us go through this so 

the interesting thing here is. So, I have to show this assuming that S is set of ground clauses if it 

is unsatisfiable then the empty clause can be derived and we need to show that.  

So, let us proceed with this proof as follows. What I am going to do is I am going to do this proof 

using some measure. So, I define hash S as so let S be the set of clauses C1 to Cn. So, there are n 

clauses and hash S consist a hash S is a number and this number is sigma Ci i equals 1 to n. I 

take the number of literals in each Ci so basically I take the cardinality of the set Ci. And, I add 



up all of them and then from this I also subtract n this is my measure. I take this measure and the 

proof then is by induction on hashes. This is the measure has been chosen in such a way that 

essentially you can start in induction by 0 from 0. So, if you were to start your induction. 
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So, if hashes so you take your Basis and if hash S is 0. Then, what this means is that this 

summation is equal to n. Now, this summation can be equal to n if and only if every clauses is 

singleton clause. So, this summation cannot be equal to n on so which means that the case when 

hash S is 0. Means that every clause is a singleton every clause contains a single literal. If, every 

clause contains a single literal so essentially what we have is that. Your S represents the logical 

formula and of lambda i. Where, lambda i is the singleton is a single literal representing clause 

Ci from i equals 1 to n. So, if S is this and you start with the assumption that S is unsatisfiable. S 

has no models then, we had a theorem somewhere which showed that there should be a 

complementary pair. Where is that theorem was it an normal forms skolemization I think 

Herbrand’s theorem Herbrand tree of interpretations. 

Student: Before this  

Before skolemization I think I had sometime after moving quantifiers prenex normal form next 

conjunctive herbrand algebra. Here, this is the one. 
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So, which means that there is a complementary pair so if there is a complementary pair then of 

course you have derived the empty clause. So, the basis is trivial so let us take the induction step 

so the induction step so this implies that some lambda i is the same as some lambda j bar for 

some i and j. So, the induction step is when hash S is greater than 0 if, hash S is greater than 0 

and you have n clauses that means there is at least one clause one Ci which is not a singleton. So, 

let me assume that this Ci let me isolate one literal from it. So, I let me say that this is so it 

contains at least two. Two literals of which of course this Di is not empty.  
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Now, let us look at so Si1 consist of S minus Ci union Di. So, basically this is nothing and let me 

consider Si2 consist of S minus Ci union this lambda i. So, we split one clause Ci into two parts 

which separated out one literal from the rest of the clause. And, now we are considering two sets 

where it is clear that hash Si1 is less than hash S and hash Si2 is less than hash S. Now, we have 

to do some reasoning the claim is that if S does not have a model. Then, Si1 and Si2 do not have 

models either because, from the soundness if it follows that. If, Si1 has a model then S would 

have a model because what are you doing this lambda i you separated out that Ci with this 

lambda I essentially what you are saying is that this Ci is logically equivalent to an or of the 

literals. So, if Si1 which does not have lambda i if it does have a model. 

Then, oring a lambda i there does not change the model it does not make the model invalid the 

same model will hold and in fact on the. So, the same argument holds if this Si2 has a model then 

by adding of a few more literals in an or there you have not you are not destroying that model the 

satisfiability of the model. So, which means that so it follows that if S does not have a model 

then Si1 and Si2 do not have models they have measures which, are smaller than S. And, if Si1 

and Si2 do not have models then from by the induction hypothesis it is possible to derive the 

empty clause from each of them. So, that is a next conclusion. 
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So, essentially what you are saying is that the empty clause I am just going to use this is 

derivable from each of Si1 and Si2. So, there are two resolution proof trees basically you start 

with Si1 and you go through some sequence of resolutions and you end up at one place where 

you have an empty clause and probably other thing too. But, the empty clauses are important 

thing. And, you start from Si2 you go through your resolution proof and it is possible to find an 

empty clause. Whatever, else might be there but that does not prove a done thing. Now, what I 

do is at look at this proof tree this Si1 did not have lambda i. So, I look at this proof tree and 

supposing and I say supposing, I had taken Si1 with a lambda i inserted there in Di. So, that this 

thing again I restore Ci back and then, supposing I look at this proof tree so. Which, means I 

have essentially replace this Si1 by S the proof tree still is valid except that there are two 

possibilities.  

One possibility is that this empty clause is still derivable. The other possibility is that instead of 

empty clause being derivable I do not have the empty clause but I have this lambda i occurring as 

a singleton theory. This those are the only two possibilities if I consider the same proof tree then 

this is what will happen if I put back my lambda i into Di to restore Ci. Then, this is what can 

happen to this proof tree. Now, let us look at Si2 now Si2 had lambda occurring in it lambda I 

occurring in it. I claim that if, this empty clause here if this does not have lambda i occurring in 

it. Then, lambda i went as part of a resolution step somewhere here. If, lambda i went as part of 



some resolution step here. And, that resolution step was never used here then that resolution step 

can now be used here. If, lambda i is if lambda i continues to reside here. I mean in Si2 

throughout this proof tree then the proof of this empty clause is independent on lambda i 

anyway. And, would be can be incorporated here so which means that lambda i would not have 

occurred in this empty clause. In either case I can derive the empty clause from S that is I hope 

they are disconvincing is that any there might I might be a sub-case I would left out.  

Student: is that the theory relations will of lambda where I mean where we got lambda out of 

that.  

Student: of that clear that how do you formally see how do we formally claim that indirectly.  

No  

Student: kind of the same relations and the relation of Si2 should be.  

No we are not just doing a copy and paste it of the resolution steps we are doing something more 

complicated all we are saying is. If, you can act the exact occurrence of lambda i in this proof 

there are two possibilities either, lambda i went away as part of something so that some other 

clause had lambda i bar and lambda i and that lambda i bar were chosen literals for resolution 

and it went away. So, that means in this case there are two possibilities of course remember that 

so what can what so that means that if lambda i continue to remain here. Then, that lambda i bar 

was step was never used so there is a lambda i bar hanging around here. So now, I can resolve 

those two and I can derive the empty set.  

Now, if what was the other case. 

Student: there are still a lambda i here. 

If, there is still a lambda i here if this lambda i that was there continues to resolve it somewhere 

here. Then, anywhere lambda i is not interest was not involved in the proof of the in the 

derivation of empty clause. So, which means I can still derive the empty clause here whether 

there is a lambda i or not. So, I could not have derived that without it and adding that lambda i I 

would still get this empty clause within this lambda i would not be in this in either case therefore 

I would have derived an empty clause from S.  



Student: sir a lambda i bar still in  

No I am considering two particular two separate cases. 

Student: in that there should be a lambda i bar in the resolving down the Si1. So, my question is 

the is it not possible that lambda i bar could have been used in some other the resolution step or 

no.  

But, then what I am saying is if then what you are saying you are using the fact that the 

resolution might involve more than one pair of literals. Because, you are talking of subsets of 

literals the same kind that is what you are saying. Then all I am saying is in this case also modify 

this proof so that this lambda i also goes as part of that proof. So, that is what the problem is but 

in either case I would have derived an empty clause from S. And therefore, for ground clauses at 

least this step is complete I mean in this resolution is complete. 

So, this is actually the most interesting lemma because the other lemma the main theorem which 

we need to show is that in the presence of free variables and basically what are you saying there 

now. We will do resolution there if I have let us say p of x and naught p of y somewhere. Then, I 

will do this substitution x for y or y for x and may be do this do the resolution. But, that is 

essentially like saying take all ground instances of p of x, take all ground instances on of naught 

p of y. And, for every p of some term here I can find the naught p of the same term there and I 

can do propositional resolution. Except that could be infinitary the number of terms instances 

could be infinitary and so we resolve p x with not p y for example.  

So, the propositional resolution proof is actually the most interesting. Because, the rest of the 

thing is really a formulization that if I did it with variables and then I can find various ways. The 

only other interesting aspect which is different from the propositional resolution is the fact that 

we are taking whole subset set of literals delta i that needs to be justified. So, for that we require 

some extra machinery so this lemma called a lifting lemma which I have to prove it. And then, I 

pro completeness for the main theory but what I am saying is I will read this lines and put them 

up. And I live it to you for a self study since on Friday we are having essentially an open session 

which we do not want to record here.  


