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We, start some start now so we were looking at various aspects of simultaneous substitutions.  
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And, we showed that Substitutions the set of substitutions which I think for given signature of 

omega I call it as S omega V I get somewhere some where I cannot immediately find it. But, so 

for in any algebraic system of course one of the most basic things is actually equation solving it 

does not matter in what branch of mathematics we are talking about. After the basic operations 

the next thing to do is to do equation solving.  
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And, unification is a essentially like equation solving I mean what we are saying is supposing I 

have two different terms two terms. Then I look at I want to find suitable substitutions which 

make those two terms syntactically identical.  
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So, if I look at two terms and I am I am saying that I have two terms S and t and, when I say that 

I unify them. Then, I am essentially finding some substitution theta which will ensure that theta S 

is syntactically identical to theta t. That, is in the sense the same as trying to solve the equation s 

is syntactically equal to t. Where, you are looking for essentially term patterns for the variables 

so that when you substitute then the two sides become syntactically identical. 

So, we will essentially talk about so this is form of if you if you take two terms and want to make 

them syntactically identical by just substituting terms for free variables I mean you are working 

all entirely within a universe I mean. So, the only the value domain is also just terms syntactic 

terms. So, you are saying what kinds of substitutions can, I perform for the variables and the two 

terms. Such that the two terms become look identical and there is a other process one can think 

of a process like anti unification. Which, says that two terms look different what could have been 

a term.  
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So, that if you gave separate substitutions to the two terms you get two different things. So, what 

I am saying is so there are two terms as in t let us say which are syntactically different. So, S is 

not syntactically different to t. What kinds of terms exist? Such that let us say a term u such that 

if I applied some substitution theta T u I get S. And, I apply some other substitution tau to u I get 

let us say t. So, this is supposing so this, is a process called anti unification one thing of course is 

that in the case of anti unification you can always just have a single variable x. Let us say that is 

that’s an anti unifier you know you do an appropriate substitution for x you get S.  

Some, other substitution for x you get y you get t I mean that is. But, you can ask a more subtle 

question, What is the most specific kind of term u that you can find which preserves all the 

commonality of structure of S and t? And, then what is the most specific kind of term for which 

if you apply to some minimal substitutions theta and tau you will get S and t I means that is one 

thing. So, that is anti unification of course is more useful in the anti universe we, will worry 

about unification in the current universe. So, which is essentially like a equation solving but we 

will generalize it further. 
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So, let us just say you got n different terms and you are looking at some kind of substitution 

remember that free variable substitutions are length and depth in non decreasing. So, you are 

looking for some substitution theta such that, theta t1 is syntactically is equal to theta t2 is 

syntactically equal to theta tn. So, this is like generalizing the concept of equation solving to 

unify n terms. So, at the moment we will just regard this as simply an interesting problem to 

solve I, mean thus. So, and many of you may have actually come across these things before in a 

other areas like for which unification is very useful in addition to logic programming namely 

namely things like type assignment and functional programming languages. And, finding the 

most general or principal type scheme for a for a type for a lambda term in which the types are 

not pre declared principal polymorphic type scheme let us say here.  
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But, we let us look at this as a problem from which we can go on to logic programming. So, 

there are here are some basic things for terms their depths size sub terms. And, there is a peculiar 

thing that I have defined called positions I mean. So, we look at a term as a abstract syntax tree 

so you take any tree I can uniquely name the nodes by a position.  
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Which, is a string drawn from N star where the root position is the empty stream and as you go 

down the tree you prefix current position. So, for example if I have a function like this then, if I 

have term like this then, at the root position I have f at position one i have t1 at position n I have 

tn. Now, supposing t1 is of the form g of some u1 to un. Then, at position 1 I have g at position 

1,1 I have u1 I have the root of u1 at position 1m I have um and so on so on. So, we can define 

positions in a tree also in this we can as strings over the naturals based on the area t here. As, in 

there are symbols at the root position there is notion of sub term. So, the notion of sub term is of 

course obvious so our position this position has a string.  
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So, it is a, it has a prefix ordering so I can talk of position p which is prefix of a position q on a 

tree. And, essentially if you take this sub tree rooted at p the sub tree rooted at q is a sub tree of 

the sub tree rooted at p. So, I have sub tree relation like this, a proper sub tree relation like this 

which does that but I think I made a it is quite possible that I have made a mistake somewhere 

but we will when we come to that I will let you know. So, we will talk about let us define some 

basic things so we will say a nonempty.  

Student: When union (Refer Time: 10:20)  
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Which, union know here this is a, for any for any term t a pos of t is the set of all positions that 

are valid that, are that in that term that is all this here. So, the concatenation is here this i dot pos 

of ti here, that that dot is a concatenation operation have I put the prefix here.  
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So, here is where I made the mistake it should be. So, t so for any term t and a valid position p 

which is a string belonging to n star t with this vertical thing subscripted with p is a sub tree 



rooted at p here. So, it is so what is if P is a prefix of q then, essentially what we are saying and p 

and q are valid positions in t. Then, essentially what we are saying is t the sub tree rooted at the 

position q would be a proper sub term of the sub tree rooted at position p I mean that is the 

correction that is needs to this is the sub term. This is, the proper sub term relation here and ST 

of t is the set of all sub terms set of all u such that u is a sub term of t. In particular the sub term 

relation is reflexive so t itself is a sub term of itself here that is.  

So, here is this mistake needs to be corrected. So, we will talk about unifiability so a nonempty 

finite set of terms t1 to tn is said to be unifiable if there exists a substitution theta. Such, that 

theta t1 theta makes all of the terms look alike. And, of course all substitutions apply only for 

free variables here. So, actually it is a good idea to if we had bound variables and so on in a even 

in our term language. Which, is quite possible if you consider things like summations and so on 

and so forth. Then, of course what we should say is it this is alpha equivalent to so this 

equivalence syntactically equivalence will be alpha equivalence and not pure syntactically 

equivalence. So, then we would say that theta is a unifier here.  
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There, are some simple examples let f and g be distinct binary operators and x, y, v and w be 

variables. You, say you take f of x, y and f of v, w they can be unified by this substitution theta 

which for example x for v and y for w is one possibility. They, can also be unified by theta 



inverse in which in what the domain and the range. Which, is possible in this case when the 

substitutions are what are known as pure variables substitution here where the variable is 

replaced by variable and not by complex term.  

So, then theta inverse is v for x and w for y that that also will work to unify them. So, in that 

sense theta f can be regarded as some kind of a solution of this equation f of x y syntactically 

equal to f of v, w. For any three terms r, s and t we can take f of x, y and f of v, w and you can 

unify them by this substitution. Which gives you more complicated substitutions I take g of s, t 

for v, g of s, t for x f of r, r for w and f of r, r for y and I can unify them. So, basically what you 

saying so the equation solving it is possible that there are there is more than one solution. There 

are there could be a large number of solutions. And, in certain cases of course like this is a 

peculiar case when you want to take when you want to make basically x, x to be the same as 

what kind of substitution will you get. So, if I take x for y then, I get the both syntactically 

identical. So, f of x, x is of course an instantiation of f of x, y it is like a particular case of f ,x, y 

even though x is a variable.  
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So, and then if I take two terms f of x, y and g of x, y then they cannot be unified under any 

circumstances. So, what this means is that this equation solving is as doubtful I mean. So, it is 

possible that there are no solutions to this equation solving process here because of the fact that f 



and g are distributing binary operators you can never make this two terms look the same by 

nearly by doing substitutions. If I, take f of x, y and f of y, x they cannot be unified by a rho I 

mean we saw previously that they can be unified by this x for y. But, they cannot be unified by 

rho which switches which exchanges x and y for example. So, it does both x for y and y for x 

because each case when you apply this rho to this these two you will get different terms here. So, 

let us so this is the simplest way of looking at unification how you have to be sort of careful in 

unification  Now, so if you look at this unifiers so there is a certain sense in which this theta and 

theta inverse are more general then let us say this term here. So, what happens in the case of tau 

is, it makes a solution far more specific by using greater structure. Then, is a absolutely essential 

I mean when you have a simple variable there you can allow for further substitutions to be made 

later which make it more specific. Where, as if that variable has to be is replaced by some term 

unnecessarily then you are actually committing it to far more specific substitution than is 

absolutely essential. So, what we are so you were to take this so this for example this g s, t for v 

as suppose to x for v is this g s, t for v is very specific commitment you know which basically. 

Where, as x for v if you do the substitution x for v at some later stage if you have to do replace at 

x by g s, t you could still do that with an, other substitution. So, there is some kind of minimum 

replacement that you do, to make the two terms equal that minimum replacement is such that it 

makes a minimum amount of commitments to a structure. So, in that sense this theta and this 

theta inverse are more general than let us say this g, s then this star. Similarly, f r,r is a very 

specific commitment which makes it very specific. So, if it had been f z, w f y, z for example. 

Where, y and z are variables that would be more general then f r, r or it will be more general than 

f r, s for example.  
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So, there is a notion of Generality of unification which essentially is comparative. So, a certain 

substitution theta is at least as general as another substitution tau. And, we will say that theta is at 

least as general as tau if there is exist a substitution chi such, that tau is obtained from theta by 

applying chi by doing a composition of substitutions. So, then as you do more and more 

substitutions you are likely to become more and more specific in the term. You, constrain the 

term structure more and more. We, would say that theta is as general as tau if, theta and tau are 

each as general as each other. So, this is something that typically happens can happen because of 

the fact that you are using different sets of variables in the substitution rather than. And, so 

therefore in general if, theta is at least as general as tau. What, you expect is that for any term t in 

which you apply theta and t the resulting terms theta t and tau t will differ at most in the names 

of variables. That is otherwise they will have the same structure they will differ the leaf nodes in 

terms of variables. We, would say theta is strictly more general then tau if, theta is more at least 

as general as tau but it is not equal to it is not as general as it.  
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So, this Generality relation is a preordering a so in the sensor it is a reflexive and transitive 

relation. And, this equally general at relation is an equivalence relation it is a reflexive transitive 

and symmetric. This, strictly more general is an irreflexive and transitive relation.  
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So, that is we will look at it this way. So, now so what you have to have is you have this given 

some terms. And, given some substitutions you have a notion of more general which is 



essentially if you quotient it on that equivalence basically you got a partial ordering relation on 

the set of all possible substitutions. So, there is an ordering where is a partial ordering on the set 

of all substitutions. And, we can always look for the highest element the most general element in 

this ordering that is what we are looking at. So, let t capital T is consisting of a set of terms ti be 

a unifiable set by the way we know that some of these sets of terms may not be unifiable. So, let 

us take a unifiable set and a substitution theta is called a most a most general do not know 

whether it is a most it is not unique. Because, there are other there could be others which are 

equally general and which are still different from theta.  

So, a substitution theta is called a most general unifier of T if for each unifier tau there exists a 

substitution rho such that tau is rho comes with theta. So, if it is possible to if every other 

substitution which unifies this set of terms can be obtained from theta by doing a further 

substitution then you would say that you got essentially a most general unifier. So, given a set of 

terms if it is unifiable then there is a most general unifier somewhere in the partial ordering of 

unifiers of substitutions you would find some unifier. And, it could be a most general unifier if 

there if there are two most general unifiers then there must be equally general. And, if they are 

both equally general if then they essentially differ in variable naming. So, I do a variable 

renaming I should be able to get one from the other that is. So, that is what this last property 

says. So, there is what is known as a pure variable substitution rho in if, rho is a substitution 

which is replaces variables by variables.  
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Then, there is also a rho inverse usually unless rho is of the form z for x z for y this should not 

happen if their domain and range are equally numerous then, a rho inverse might exist. And, 

notice that a, substitution like this makes a makes a term more specific. Then, a substitution in 

which I have different variable names for each element of their domain this actually collapses to 

variables and therefore imposes a certain syntactic structure. Which, is more specific than this 

because this can be obtained from this by another substitution like this. So, I mean so the 

existence of rho inverse is not guaranteed even for pure variables substitutions firstly, secondly 

the generality is important. So, here I have so I have loosely said that basically there should be a 

variable renaming. What we are essentially saying is it that they are both equally general then 

they differ at most in the names of the variables. But, there is a one two one correspondence 

between the variables occuring in one and the other with respect to the positions. So, that 

positions are preserved that otherwise you would have you would have certain collapsing 

identifications like this z for x and z for y. So, what we are saying is that when if theta and tau 

are both equally general then not only do they differ only in the variables. But, variables 

basically means leaf nodes the labels on the leaf nodes of the abstract syntax trees. But, there is a 

one to one correspondence between the positions of the leaf nodes at which the variables occur 

between one tree and the other. And, that position is preserved so there is an isomorphism there 

between the leaves which, has to be preserved.   
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So, this is a Motion on Position and there is some notion of a root symbol at a position is a 

function some set we define. So, one thing of course is that the set of positions for any term is 

nonempty and there is always a root position for example. And, the sub tree rooted at that root 

position is it is a term itself. And, this is just to lift it from individual terms to set sub terms. So, 

this for a set of terms T I am looking at all the positions that are common to all the terms in there 

in tree.  
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So, the process of unification essentially requires that we compare these two trees in some order 

we traverse from the root and compare them. So if the root symbol of the two trees is different in 

the sense that there is some function symbol their not a variable symbol. But, a function symbol 

there you can then and if two function symbol are different of course the two trees are not 

unifiable. And, if the two trees are not unifiable in a set consisting of many trees then that set is 

not unifiable. So, given a set T of terms also we would a set of abstract syntax trees the 

disagreement set of T is defined as the sub terms rooted at some position q. Such, that for all 

prefixes of q the two trees the thus all the trees look identical. For, all prefixes presiding q the 

trees look identical. And, it there is a disagreement if at position q there are at least two trees 

with have different symbols rooted at q at position q. So, this is the proper prefix relation.  
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So, one thing one standard thing that most logic books use is that they do not actually at them as 

abstract syntax trees. But, they look at them as terms involving terms involving parenthesis I 

mean you can think of.  
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Supposing I, have this let us say t have a set consisting of just these two terms. Where, I have not 

specified what the terms t1 to tn are what this terms u1 to u n are. But, basically the idea is what 

you can do is, they since they represent it always in prefix form with parenthesis so on so forth. 

You, can just look upon it as doing a traverse from left to right of the symbols. And, looking at 

the essentially left most disagreement a left. So, but what this uses is something that goes beyond 

our, this prefix ordering. Because our prefix ordering is not a total order but actually any order 

which is consistent with the prefix ordering is sufficient to get a left most disagreement. But, I 

prefer to use this prefix ordering because there is absolutely no reason why we should look at it 

as through a left most disagreement. We, could even start looking at it from the and look at a 

most disagreement. Sometimes, that might actually be more beneficial but I would not do that. 

But, in principle at least that possibility does exist so then what it means is that you take any total 

ordering so if you want to take the get the left most left most disagreement basically you take any 

total ordering consistent with the prefix ordering. And, such that the left sibling precede the 

sibling in any at any level.  
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So, if you have this if you have this total ordering then you can compute what is known as a, 

Disagreement set. And, in particular this will compute the a left most disagreement set this is 

actually. So, I have written this in essentially some kind of functional style but, basically what 

we are saying is you start at a position a start at the root position. And, start take the set of all 

positions that are common to all the trees all the terms. And, if the root positions are all the same 

which is what this is sub carnality of the set of all root symbols at position p. If, that set is has a 

carnality of 1 which means they are all the root symbols are identical. Then, what you do is you 

take the next minimal position that is available in the set of common positions. And, look at all 

the trees and look at their look at whether they have the they disagree. And, so this is essentially 

recursive on this it is essentially looping on this till you find a minimum position when there is 

disagreement. Or, which will give a position p at which there is a disagreement. So, you take the 

entire set of terms at that position rooted at position you take all the sub terms rooted at that 

position p. And, that is your disagreement set and because you are using a left to ordering 

essentially you will get the left most disagreement. When, you look at in this fashion so this just 

computes the disagreement set.  
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So, just let us look at these terms so I have taken a set of two terms here a, is constant z is a 

variable. So, there is a disagreement of course the root at the position epsilon there is no 

disagreement. So, the left most disagreement occurs when between a, and z where let us assume 

a, is constant and z is a variable. So, that is a disagreement set and the sub tree rooted at that is 

just the sub tree is rooted at that adjusts this a and z. So, this is what the algorithm actually we 

will give you could of course change this ordering and still keep it consistent with the prefix 

ordering. And, do a most or some other kind of disagreement if you do if you try to lo at it from 

the most then of course what the disagreement you will get is somewhat deeper. So, at epsilon 

they are both the same at 3 which is the next position they are both the same. And, at 3 dot 1 is 

the first disagreement. So, you get your disagreement set then is g zy. So, that is this at a position 

3 dot 1 this string 3 1 position string 3 1.  
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Let us, look at this is an important example let us look at left most disagreements that is 

convenient. So, of course so these two are so there is a disagreement at position 1. So, this 1 has 

the term g of z this 1 has a term z and, this is the disagreement set. But, the important point is 

that if I take any substitution trying to unify these two terms i need to provide a replacement for z 

which, will make it equal to g of z. But, the same substitution is applied to all the terms. So, 

therefore there is going to be no possible substitution theta for z. Which, will make theta z the 

same as theta of g z and, that is.  

So, this is what is known as occurs check problem. And, so in such a case actually this set is not 

unifiable at all. So, this set of terms is not unifiable and this is this is serious problem. In fact this 

is, a problem that makes all prolong implementations logically unsound. What, does happen is 

that for the sake of efficiency no prolong implementation actually checks before doing a, 

unification. Whether, there is an, occurs check problem they proceed ahead anyway. And, then 

there is and then actually you can get unsound so you can get unsound results because of that the 

occurs check actually makes it unsound. There, is another problem in prolong which also makes 

it unsound and that is the cut problem. But we will not worry about that at the moment that is 

another efficiency kind of problem.  
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So, most prolong implementations actually do not do an, occurs check simply because it means 

going to deep down into the tree to find out possibility of occurrence of a free variable. Let us 

look at this set f of a, x, h or g z f of b h,y h,y here the disagreement is a position1 and a and b 

are both constants there’s absolutely no way this place this set can be unified. 
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So, S3 this set is not unifiable here, S4 f of h z, x, h of g z f of g x h, y h, y again at position 1 

there is a disagreement but, then h and g are not the same. So this is also again not unifiable 

under any substitution of free variables.  

(Refer Slide Time: 38:40) 

 

So, here are some facts if s prime is a Disagreement set of a, of a set S then if S is unifiable. 

Then, S prime must also be unifiable unless you can unify S prime you really cannot unify S. If S 

is unifiable and theta prime is a most general unifier of S prime. Then, there a, exist a most 

general unifier theta of S such that theta prime is at least as general as theta. Basically, theta 

prime gives you the least number of constraints a required to make the disagreement set look the 

same. And, therefore in that sense it is likely to be more general then the entire then a unifier of 

the entire set S it will have less constraints then the entire set S. And, in fact what it means is that 

what this actually is saying is that we will start from theta prime unify with the minimum number 

of constraints the first disagreements. And, then traverse down this is a partial order you traverse 

down this partial order. And, keep getting more and more specific as in when you require to be 

specific. So, your final mgu will be related to any initial mgu of a disagreement set by this 

generality relation.  
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So, here is a Unification Algorithm which is actually quite a inefficient algorithm. But, it is for a 

enough to know that it is there is an effective procedure for unification. So, we start with the 

identity of the empty substitution. Which, is this 1 you are given a set a finite set of terms to be 

unify. So, there are two possibilities either the set is unifiable in which case you find a most 

general unifier or the set is not unifiable in which case you report failures that is. So, I do a so 

this theta prime here, is actually a partial unifier. So, you found a disagreement set you unify that 



disagreement set now you apply that theta prime over the entire set S then, some part of it begins 

to look the same compared to S itself. So, theta prime applied to S is partially unified version of 

S. And, you have to do further you have to find further disagreements before you can unify the 

whole of S.  

So, here again we I look at this even though it is an effective procedure I look at it in terms of 

sets so, and I look at sets and carnality of sets. So, basically at any point you have got a certain 

substitution which is a partial substitution to be applied uniformly over the entire set T. And, 

having applied at a you will check the carnality of the set so, obtained if it is 1 then it is been 

unified and, the unifier is theta. So, you start with some theta initially of course you start with a 

theta which is the identity substitution. So, if theta S has a carnality of 1 that means it is being 

unified and theta is your most general unifier otherwise find it disagreement in theta S. So, what 

so essentially if you going to traverse this path then you should apply this theta prime to S and 

then look for a new disagreement. So, you apply you find the disagreement set of theta S  
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And then, this portion so is the occurs check problem you check whether there exists a variable 

in the disagreement set such that that variable is not free in any term. You remember that zgz the 

occurs check was because z occurs freely in g z. So, this x that you choose should be a variable 

that does not occur freely in any of the other terms unless the other terms are also x then which 



case there is no disagreement. So, a disagreement is a set so you cannot you will have only one 

occurrence of a variable x. So, if they all differ only in variables then you will just have as many 

variables as many distinguished variables as there are in the set. So, if you can find a variable 

which does which is there in the disagreement set but which does not occur free in any of the 

other terms of the disagreement set. Then, you perform a substitution the other thing is that in 

this notice the other thing is that, this partial unification is possible only if this disagreement set 

consists of at most one complex term. All other entities in the disagreement set can only be 

variables I mean you take a disagreement set.  
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Basically what we are saying is that it can have a whole lot of variables and it can have maybe at 

most one constant or some complex term. But, it cannot have more then, one constant or 

complex term if it has is a set if it has more then, one constant or complex term. Then, they occur 

only because they are different then you cannot unify. So, basically the disagreement set you are 

making some progress towards unification only if everything there except one possible term is 

variable. If, you have two different constants or two different other terms which are not variables 

then your unification is going to fail because the terms are not going to be unifiable. So, in fact 

this term actually will be unique if it is unifiable this term T if it is just a variable then there is no 

problem.  



But, if it is something other then, a variable then that can be only one term otherwise it is not 

going to be unifiable. And, which means that you can choose that T for x essentially and in fact 

what you are going to choose is T for all the variables that occur in that is what you are going to 

choose it is possible to do that here. But what we what I have done is that I have made it one 

substitution at a time choice. So, if there are two variables x1 and x2 and a term and a single term 

T then what will happen is it will first do a T for x1 in this iteration. In the next iteration it will 

find the disagreement T for x2 and then make that another substitution. So, it is sort of does to it 

does it to sequentially even within the set where as it can be done in more efficient way.  

So, what you are going to do now is you going to just take the existing substitution and compose 

this in your substitution. And, if this condition is false then essentially you have an occur check 

failure and that set is not unifiable and then you return failure and so on and so forth. But, the 

important thing and the hard thing which I am not going to do is this which I am going to leave it 

for you to study.  
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This is the unification theorem every algorithm has to be justified by a corresponding theorem 

and the unification theorem essentially says. So, the unification algorithm always terminates 

firstly and it satisfies it is post condition. And, the post condition is that if S is not unifiable then 

it reports failure and if S is unifiable then it gives a most general unifier. So, I have got the proof 



here this put in various claims but I am not going to go in detail because you can go and study it. 

Especially the last case where you are actually checking where if it does if it is unifiable then you 

do get an mgu you do not get an arbitrary substitution. You, do not get an arbitrary unifier you 

get an unifier which is most general that is an important aspect to be proven here.   

 


