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Substitutions and Instantiations 
 

So, let us start. So, we did Herbrand’s theorem. So, let us actually go back little bit and 

recap those things. So, actually let us look at this. 
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So, we had this Herbrand tree of interpretations and essentially what we what we’re 

saying is that you take. Firstly, our Herbrand interpretation. So, this is the set of all 

possible interpretations Herbrand interpretations. So, which essentially means that you 

take any theory that you want you do not have any concrete representations the only 

concrete representations that you have are in the terms of terms defined on that signature 

and these p naught p one etcetera are essentially atomic predicate symbols applied to 

ground terms. So, which. Firstly, implies that you do need at least constant. So, we’re are 

always talking about a signature which if it comes without a constant then we extend it 

expand it to include a constant at least. 

So, that there are ground terms always the set of ground terms would be empty. So, you 

have a non-empty set of ground terms and. In fact, if you have even one constant then if 

you have even one constant symbol then you have an infinite collection of ground terms 



actually and those ground terms applied to the atomic predicates symbols of appropriate 

arity enumerated enumerate all those grounds formulae ground atomic predicates and 

this these capital p naught p naught naught p one and so on and so forth essentially 

signify ground atomic predicate formulae ground atoms and all possible truths 

assignments for these. 

So, this tree in infinite as of course, you have only a accountably infinite number of them 

you have only a countable you’re language of terms itself produces only a accountably 

infinite collection of terms and you anyway have only a finite number of atomic 

predicate symbols. So, the number of ground terms that you ground atoms that if you 

have is only countably infinite it cannot be more than that. So, this. So, the herbrand tree 

of interpretations essentially gives you all gives you power set of that yeah. So, it gives 

you all possible interpretations in the term algebra itself for all possible atomic predicates 

right. 
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And what we showed we showed the compactness which notice that this compactness is 

only for a set of closed quantifier free formulae here, and later it is only for closed 

formulae yeah compactness of closed formulae. 
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So, we are not really talking about formulae which have which are open and which have 

free variables and so on and so so and what we are are saying is that a set of a set phi of 

closed sigma formulae has a model if and only if every finite subset of phi has a model in 

this phi can only be countanbly infinite because we are constrained by a language. So, it 

cannot be an uncountable set of formulae for example. 

 So, it is only a countable set of formulae and there is there is one possibility which of 

having things uncountable which I am never which I have not actually ever mentioned 

the only way you could have a possibly uncountable number of formulae is actually if 

you’re signature sigma has an uncountable number of atoms or atomic predicates 

symbols or function symbols if it does or it simply if it just has an uncountable number 

of constants take the real’s for example, I think of every real number is a constant then I 

have a signature over the real’s which is actually uncountable. 

In which case then the number of terms that you have is actually uncountable which also 

means that you could therefore, have a an uncountable number of formulae, but let us not 

get into that there. So, so actually, so we. So, in theory actually the set phi could be 

uncountable and provided if you have an uncountable number of terms for example, and 

you can have an uncountable number of terms for example, if you have a uncountable 

number of constants in your signature, but let us not get into that we will stay with 

countability and our infiniteness will always at most countable right. 
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So, we proved the compactness theorem. Yeah. 

Student: This how do we move from that g four phi to the finite set of sorry phi. This is 

this is because of the previous lemma right. 

This is, but from the we found out a finite subset of g equal to phi g of whole phi and 

then the next line we claim is that there is this finite subset of phi which is not satisfied. 

Student: This was it is… 
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This were you are saying is a formula. 

Student: no no line after by lemma next sentence. 

This finite set is a subset of a finite subset of phi that does not possess a model if it is a 

finite set then anyway it is consists of ground terms it is given that it is a finite set it 

should be a. So, there should be only a finite a finite number of. So, so this is after this is 

a finite set then you’re saying that this finite set need not be a finite set of capital phi. 

Student: we are saying that how how come this pin terms can you explain it a little bit or 

it is just a finite set of g four phi or it is a subset of some finite subset of phi. 

Ah ok let us let us look at score phi score phi is obtained from capital phi by solemnizing 

each of this solemnizing finding solemn functions for the existential quantifiers there are 

anyway all only a finite number of them right and when you when you find the set of all 

ground instances of these all you do is you’re replacing all the variables basic now after 

having solemnize they are all just universally quantified variables function universally 

quantified predicates and you’re instantiating those universally quantified predicates with 

ground ground terms and you’re g sko phi is essentially this and all this is countable at 

most all this is countable at most and with assumptions that it does not possess a model 

means that there is a finite subset which does not have a model and therefore, it means 

there is a finite subset of g sko phi which does not have a model. 

But that g sko phi that finite subset of g sko phi comes from some finite subset of atoms 

in of phi that is it from some some finite subset of formulae in phi and there is just some 

ground instances of those some finite set of ground instances of those that is how you 

can get a finite subset you cannot get a finite subset otherwise. 

And and if that finite subset does not have model then it means that you lift it back to phi 

there’s a finite subset of phi which does not a model right. So, that is. So, that what 

happens here hence there is a finite subset of phi which does not a model which 

contradicts our assumption that every finite subset of phi as a model. 

Student: You could have g phi.  



No no think think of what happens when you go back from g sko phi. So, you take a 

finite subset of g sko phi which does not have a model when you go back from g sko phi 

to phi or when you go back from g sko phi to find the appropriate elements in sko phi. 

What do you have you have all universal quantifiers yeah you have all universal 

quantifiers and you have found a you have found an instance for which the universal 

quantifier is not satisfied. So, that finite subset of sko phi is not satisfiable because it is 

all the all the variables are universally quantified that sko phi would have come from a 

finite subset of phi and. So, what you’re saying and that might have its existential 

quantifiers, but if there isn’t what we know if there isn’t a model for the ground term 

then there is no model for that subset too right so. 

So, that is how this works out yeah. So, a simple therefore, the interesting thing now 

about since I was talking about countability and uncountability. Now, therefore, it is 

therefore, very clear that is there is this important theorem by lowenheim-skolem which 

says that if a set phi and this set phi could be infinite has a model then it has a model 

with the domain which is at most countable right. So, set phi of course, again this set phi 

satisfies the same constraints that I have not mentioned it here as the compactness 

theorem. So, which means phi is going to be closed sigma formulae there are no free 

variables right and. So, what we’re seeing now is that for if you’re limited therefore, 

what the lowenheim-skolem essentially says is that if you’re limited to a signature which 

give you at most the countable number of terms ok. 

Then any model of of a set of closed formulae of accountably at most countable of 

enumerable set of closed formulae it is not necessary to look among the uncountable sets 

it is sufficient to look within the countable sets which essentially means that therefore, 

you you need the limitation of a finite or a countable sigma to produce only a countable 

number of terms is not actually a limitation for closed formulae the moment your 

formulae become open then the whole theorem come this right. 

So, as far as closed formulae is concerned which means that if you’re looking at very 

general purpose theorems even about things like the real numbers without the 

assumption of an uncountable number of constants for examples if you’re looking at very 

general theorems which had to be which have to be let us say universally quantified 

formulae. 



Then they do have denumerable models if those theorems are true right. So, they do have 

denumerable models and it is not necessary to search through an uncountable set and 

those denumerable models are essentially constructible from your signature yeah and. 

So, so let us just quickly look at the proof this is actually a very simple proof, but it it is 

phylophisically it it has a great deal of influence I mean what it shows is that they are not 

particularly limited even if you are talking about the first order theory of the real’s. 

If you’re looking at the first order theory of the real’s and you’re looking for theorems 

which are of a universal nature then you’re not limited by a language which is only 

countable and therefore, cannot represent all of the real’s yeah that is that is the that is 

actually the important consequences of this. 

So, let us look at the proof. So, assume phi has a model right then sko phi has a model 

this solemnized version of phi has a model by theorem twenty six point seven what is it. 

So, this is which has a herbrand model there is basically herbrand’s theorem. So, it has a 

model if and only if it has a herbrand model and every herbrand model has a for a for a 

finite countable signature it has only a of enumerable terms right and and the terms the 

term language itself is the domain right and that is countable that is a countable set right 

and. So,  if it has a model if and only if the sko phi has a model and that is at most 

the countable number of formulae and therefore, any this set of closed formulae phi even 

if it is countably infinite it has a if it has a model then i’am not constrained if I just look 

for terms within the herbrand universe yeah and can find I can find a model essentially in 

the herbrand tree of interpretations right so. 

So, therefore, phi has a model with at most a countable domain there are there are 

extensions of the lowenheim-skolem theorem actually to uncountable signature and 

finding uncountable models and. So, on. So, for, but I think there’re not of a practical 

significance really in all our main concern where when we look about look at 

unaccountability is really things that the real the complex numbers. 

So, what happens in the first order theory of real’s what happens in the first order theory 

of complex numbers there the theorems are not open they are always closed formulae 

and you’re looking at and if you have to find examples or counter examples which is 

what models are about right examples are counter examples then you’re not constraint by 

the fact that you have only countable language or countable domain you can construct 



your herbrand terms for the models or counter examples from a countable language it is a 

form of countable construction so. 

So,. So, what herbrand’s theorem and therefore, solemnization lowenheim-skolem 

theorem all of them they essentially says that for any theory that any first order theory at 

least that i’am interested in I do not need to have any concrete models I need to have 

only a language of terms if i;am interested only in the in the in the theorems of closed 

formulae right. So, so one. So, these. So, these the fact that you need to limit yourself 

only to a language of terms essentially therefore, it makes it possible to look at first order 

logic theorem proving and therefore, logic programming and. So, on and. So, for as 

feasible entities which you can work with just in a linguistic frame work you do not 

actually require full mathematical frame work you have a simple linguistic frame work 

and within which you can do your programming you can do your theorem proving and 

for most of the closed formulae not necessarily the open formulae. 

So, for open formulae of course, you’re there’re going to be limitations and. In fact, the 

expressibility of various theorem is going to be there, but closed formulae including 

existential formulae actually can be done entirely within a countable language which can 

be freely generated by a grammar that is that is actually the model of the story and which 

the whole concept of theorem proving or logic programming first order logic actually 

comes right. 

Student: In this. So, in this yeah. 

In the theory closed formulae. 

Yeah this phi is of closed formulae and if you have open formulae you get into trouble. 

So, actually what happen what. So, what happens is that if you have open formulae then 

your that herbrand tree interpretations is not sufficient for all the ground terms you know 

for all the ground instances this is this is sufficient just for the closed formulae. So, in 

this so. 

So, what it? So, if you’re going to do things completely linguistically then clearly the one 

of the most important things that we need to worry about is a notion of substitutions, and 

basically you look at your ground instances so and so all of them actually deal with 

substitutions. So, what I’ll do is I will quickly go through the theory of substitutions and 



take it for granted in future basically so and this. So, this lecture basically on substitution 

instantiation which is going to be independent of logic because the notion of 

substitutions instantiation is extremely general and whatever we say here is done from a 

purely universal algebra frame work and of which your first order logic language is also 

just a certain term algebra in the universal algebra frame work right so. 

So, it does not matter whether we are taking the lambda calculus the combinatory logic 

or first order logic or whatever or even propositional logic with substitution of meta 

variables by propositions you take any algebra essentially any term algebra, and you 

need to perform substitutions and first order logic is no exception so. So, we will look at 

the substitutions in substitution theory in essentially a completely a general framework 

completely removed from first order logic and as far as this theory is concerned it is just 

first order logic is just another term algebra in which the theory of substitutions can be 

applied. 
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So, that is. So, so the slides are not completely well prepared for this lecture because it is 

a it is a write up which I have imported straight into this into this thing and for my for the 

purpose of this lecture. So, so you will see certain discontinuities on which I will clean 

up later. 

Substitution theta as far as we are concerned is a total function in fundamental to 

everything every term algebra p which also includes first order logic is the set of 



variables v right and a substitution is just of a total function I am here I am a total 

function of the set of variables also the set of terms and this is a here the important thing 

here in the case of the substitution is that it is almost everywhere the entity function, 

which means that you have a you have an infinite collection of variables v, but there are 

only a finite number of variables which you’re actually replacing by terms. 

All other variables just retain their identity. So, the effect of this there is no effect of the 

substitution to all other variables. So, that is what I mean by almost everywhere identity 

this almost everywhere is a is a technical term used in first order logic to say that used in 

second order logic to essentially say that in all except a finite number of cases yeah so. 

So, now what we are saying is there are only a finite number of variables which are 

actually replaces by some terms which are not the same variables themselves. So, this 

will call the domain of this substitution by the you should not confuse this. 
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You should not confuse this dome this is this is some dome right wherever it wherever 

written so. 

Student: For many of the signature. 

Omega is signature yeah. So or. So, I use this dome small dom to denote only those 

variables which are being replaced by other terms other than themselves, so all those 

variables y for which theta y is just y itself I am excluding from this. So, remember that 



theta is a total function. So, as a function its domain is the whole set of variables and it. 

So, domain is the whole set of terms t omega v, but this small dom essentially give you 

the finite set of variables x I such that theta of x I is different from x I yeah. So, that is 

what here. So, so look at this a theta as represented as a finite set t for x where theta of x 

where t is different from x yeah. So, that is that is a theta and corresponding to dom you 

also have this concept of a range here. So, range is just this this set of terms t which act 

as the image of the variables which are actually being replaced. So, there is this identity 

substitution the identity substitution of course, is the identity function on from variables 

itself and therefore, its domain and range are both empty is dom and range above the 

empty here in that the small dom and range is ok. 

 in general let us let us keep this in general because it is not relevant to first order logic, 

but you may be you should read it we had this usual notion of admissibility of a 

admissibility of a substitution for in a term or in a predicate yeah. So, for all the 

substitutions that we considered in first order logic were substitutions of essentially a 

single variable by a term, but what I am doing here now is I am generalizing that notion 

to a set of possible variables by a set of possible terms and these are what this is what is 

known as a simultaneous substitution. 
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It is quite possible that I have a substitution theta which replaces x for y and y for x right 

ok. 



So, if I have term let us say f of x y then the notion of a of simultaneity of application 

essentially means that theta of f of x y is equal to f of y of x is simultaneous and not 

sequential there is no particular order it is actually simultaneous. So, you you look at all 

all the occurrences of variables which have to be replaced and replace them 

simultaneous. So, that where as if you if there was some sequence you applied here then 

you will you will most likely get f of x x or f of y y you will not get f of y x know you 

will not be able to switch terms right. 
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So, this the notion of simultaneity is important and the notion of and along with the 

notion of simultaneity also comes the notion of admissibility which needs to be 

generalized from a single term term for variable substitution to a set of possible 

substitutions simultaneous substitutions so, but the basic principle in admissibility is still 

remains the same you do a simultaneous substitution and there should be no capture of 

free variables that that should be the that is the basic principle on which it is defined. So, 

in in a more general fashion what we are saying is that a. So, a substitution theta which 

replaces a set of variables let us say x one to x n by a respective set of terms t one to t n 

is admissibility if each of them each of the substitutions in that set is a admissible right. 
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Then we have the notion of application of theta to s which is what I said what I have 

given. So, it is it is by by induction on the structure of substitutions it has to be 

simultaneous, but what I have also taken into account is the possibility that you might 

have bound variables occurring in terms this is something we are not we did not actually 

think of it in first order logic in the logic of terms in the language of terms of first order 

logic they were there was no they were no binding operators I mean and this treatment 

being general enough has to take into account the fact of binding operators. So, this this 

capital o x is like a typical binding operator think of it as either a quantifier in first order 

logic or think of it as lambda x and lambda calculus for example. So, what happens is 

substitutions. So, it is. So, is defined by induction yeah. 
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So, the the basic facts about substitutions are that their size not decreasing the effect of a 

substitution can never reduce the size of the abstracts in syntax tree on which it is applied 

yeah it has to be either size expanding or the size remains the same the size remains the 

same when you and this is because you are replacing a single variable which is a leaf 

note of an abstract syntax tree by a term t which is a tree in itself right. 

So, the only way the size can remain the same is if you replace a variable by another 

variable in all other cases the size will be increased yeah. So, as I said this whole theory 

of substitution it is it is not a it is meant to be general generally applicable in a universal 

algebra frame work yeah. So, in. So, in general if you had if you have an operator with 

its own parameterized on a variable and having a scope which is what happened in the 

case of quantifiers it happens in the case of lambda and the lambda calculus lambda 

abstractions then what does the notion of an applying a substitution main in that case 

basically if any substitution of that bound variable cannot result in any substitution 

because the variable itself it is just that there is a co-incidence of name in the substitution 

and in the binding, but actually the two variables are different right in this. 

What I am saying is if x belongs to the domain of theta; that means, in theta there is a 

replacement for x by a term t and I I am applying this theta to binding term of the form 

some operator x s prime then clearly this x in the binding is different from the x 

mentioned in the theta and therefore, the effect should be that this bound x throughout 



does not change in anyway. So, what it means is that you remove that particular 

substitution t for x out of theta treating the new substitution theta prime as one which 

leaves x unchanged and apply that to the body of this s prime that is that is all I am 

saying. 

All I am saying is substitutions when pushed in through a binding operator should not 

affect that bound operator should not affect that binding in anyway yeah they do not have 

any effect on that binding otherwise for all other variables they actually pushed through 

right through the terms which in the terms in in when you are looking at abstract syntax 

trees what you are saying is when you apply it from the top to the root they actually 

filtered down to the sub-trees it is like applying the substitution uniformly down till you 

reach the leaves and then make the replace the leaf by a corresponding tree t yeah of 

course, if that leaf is x and x has a binding ups up there in the syntax tree somewhere like 

this. 
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Then what you are saying is. So, let us take the same theta I have some syntax tree with x 

occurring here and may be a x occurring in a binding. So, basically what we are saying is 

this entire sub-tree is in the is in the scope of this x. So, if I apply this theta on this tree 

then this theta at least can have no effect on this x on any of the on on any part of this 

sub-tree which has x in the leaf theta cannot have any effect. 



On the other hand if you look at this. So, there so; that means, this y for x has no effect 

on this sub-tree because x is bound on the other hand x for y is no is not admissible even 

if there is no binding for y because of the fact that the by replacing y for x I might be 

capturing a free a free occurrence. So, this this substitution theta has no effect at all on 

this sub-tree, but if there is some free occurrence of x here then essentially theta will 

purpulate down and replace this x by y for example, yeah. 

So, these are these are some basic the the important I mean these are not intuitively very 

hard to understand, but they are something that when you have program them you have 

to be careful where does the binding take place therefore, how does it purpulate down 

what is the effect. So, the effect of this. So, here a of course, there is problem of 

admissibility because of which x for y cannot be done, but you have to take care of both 

admissibility and bound variables one the the natural thing to do is to use alpha 

conversion right. 

In which case what will you do you will replace this x by let us say a brand new variable 

z which means this x becomes z here and now this x for y becomes admissible and. So, 

any free occurrence of y will be get replaced by x that x will continue to remain free y 

for x because of the fact there is no free x here y for x has yeah. So, so that is those are 

the things. So, you you we we use alpha conversion quite intensively and all this to give 

uniqueness of names to distinguish bind bound variables from free variables and so on. 
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So, the basic fact of life here is that substitutions are a length and our depth and size non-

decreasing and then we have the usual notion of a ground substitution if all the terms 

which are being. So, if you have a set of substitutions simultaneous substitutions t I x I 

and all the t I are ground terms when think then it is a ground substitution and you also 

think of common instances. So, if I can there are two terms are there are two or more 

terms t one to t n which as syntax trees do not look alike, but if there is a substitution 

which can be applied uniformly to all of them. So, that the resulting trees look identical 

then you’ll say that this that resulting e u is a common instance of these terms yeah. 

I am sorry there is not a single substitution there is actually a sequence substitution there 

is actually a sequence of substitution there is a corresponding set of substitutions theta 

one to t n theta n, such that you can make all these trees equivalent to the look the same 

as u then you say that u as a common instance yeah this is slightly different from that of 

unify unification which will come to ok. 
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The two terms t and u are called variants of each other if I can find two substitutions 

theta and tau such that theta applied to one of them gives me the other tau applied to the 

other gives me the first one right, but more often we will not be looking at two different 

substitutions wall be what we will be looking at our. So, I can take this I can look at 

substitutions. So, this was simultaneous substitutions, but I can compose simultaneous to 



different simultaneous substitutions together in which case I have a composition on 

substitutions which I need to define yeah. 

The effect and basically it is defined by its effect on this on their term. So, so essentially. 

So, I supposing I have two different substitutions theta and tau and for a given term t I 

first apply theta. So, I get a new term t prime and then I applied tau on t prime I get a 

new term t double prime. So, the effect of doing tau after theta is the composition. So, 

what is the composition. So, what is the composite effect of what is the substitution 

which is which can be considered the composite effect of two substitutions yeah 

performed in sequence. 

Ah that. So, that. So, essentially this composition operation shows their substitutions of 

closed under composition and and there a there is a huge amount of case analysis, but let 

me let us. So, this composition is essentially base. 
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So, I have the tau composed with theta I am just using since there like function 

composition I am just using the function composition operation. So, there is new 

substitution ki such that now what you need to do is you need to look at the doms of 

theta and tau and since you are performing things in sequence the you have to actually 

perform this. So, so you take. So, you separate out those which are not in the domain of 

theta separate out those variables which are not in the domain of theta which means that 

any application of theta will not disturb those variables. So, if those variables have to be 



disturbed they’ll be disturbed by only by tau and. So, so this second addend here this 

second of this union essentially it tells you that all those variables which are not in the 

domain of theta get replaced by whatever tau specifies for that yeah and if you look at 

variables which are in the. So, now, look at the variables which are in the domain of 

theta 

So, theta will first replace each of those excise by some term s I that s I will then has its 

own collection of variables which tau will again replace some of them right. So, that is 

equivalent to actually taking tau applied to each of these terms s I and replacing x I by 

tau applied to s I yeah and this is for all the x i’s which are in the domain of theta for all 

the x i’s which are not in the domain of theta you just take the appropriate substitution 

from tau and this is this t j y j is just a substitution from tau yeah ah 

And this union because notice that this is a the domain of these two substitutions is 

disjoint. So, the union is. So, composite substitution and that is the effect of composing 

tau with theta yeah and essentially what this means now is supposing theta and tau were 

such that their domains were disjoint then their composition will be exactly the same as 

taking the union of the two yeah 

the domains and range is where all completely disjoint then the composition will just be 

the union otherwise you will have to apply this tau on each of these s i’s that is right now 

if you look at substitutions then says as an algebra with a composition operation then the 

substitutions actually form a monoid, yeah. So, you you take any signature omega you 

take a an infinite collection of variables v. So, and you take the set of all possible 

substitutions let us say some capital s set of all possible substitutions on this 

That itself forms a monoid with this one as the identity element and the composition of 

substitutions is associative that is something you can prove and you have a very nice 

structure like this yeah notice that I am making yeah 

A monoid is a set which is with a product operation which is associative and there is an 

identity element. So, the natural numbers are a monoid and radish and for example, yeah 

with zero being included in the naturals yeah take take any set of take any alphabet the 

set of all strings forms a monoid with the empty string being identity element yeah it is 

not abalian the natural numbers and under addition are abalian 



Yeah yeah it is not necessary yeah. So, that is. So, the inverse is may or may may not 

exist actually. So, yeah. 

Student: What is the second condition. 

This is the associativity. 

Student: ok 

Basically this domain of theta into section domain of tau is empty and domain of tau 

intersection free variables of t all t is which belong to the range of tau. Yes, I think it 

should be in the range of theta there is clearly a mistake there domain of tau intersection 

yeah I think it should be the range of theta yeah I think it because we are looking at a tau 

compose theta being just the union right. So, this has to be theta definitely thanks I will 

correct that mistake yeah, notice that I am making a clear distinction between the monoid 

equality and syntactically identical yeah most books do not do that and next it is quite 

confusing sometimes. 
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So, this this they form a monoid and then there is a there is a notion of let me see now 

this may not be very important for the rest of this lecture. So, let us let us keep this 

business of pure variable substitution you can you can actually go and read it yourself the 

most important thing is another two may theorems there which yeah. 
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So, let us actually. So, this is this is the notion of substitution which we want I do not 

think we require these notions of pure variable substitutions and substitution change 

there are lots of interesting things, you can prove which which we will skip for the 

moment ah 

But the more important thing is how are we going to use this notion of substitutions 

couple with the notion of herbrand with the consequences of the herbrand’s theorem and 

the loyanamse colum theorem in order to come with essentially a a programming 

mechanism yeah. So, that is. So, basically we need to be able to define this we need to be 

able to use this notion of substitutions to find what is known as a correct answer 

substitution in a logic program. So, we will we will work our way towards essentially the 

theory of logic programming because that that is what herbrand’s theorem gives us the 

loyanamse colunm theorem also gives us that to look for models you need to search only 

within accountable language of terms we do not need to go anywhere yeah  

So, I have rushed through this notion of substitution, but please go through it in 

sometime, but it is it is really ancillary, but we need to know the notion of composition 

of substitutions and we need to know the notion of simultaneous substitutions in order to 

be able to in order to be able to actually deals with the notions of with what is known as 

a correct answer substitution and logic programming yeah. So, go through it and we will 

start that next time yeah I will stop here . 


