
Logic For C S
Prof. Dr. S. Arun Kumar

Department of Computer Science
Indian Institute of Technology, IIT Delhi

Lecture - 02

Propositional Logic Syntax

So, let us just briefly recap. So, I just say the whole point about the logic and computer

science is that we have somehow interested in mechanization.

(Refer Slide Time: 00:41)

It is sort of fundamental, can be used for checking getting clarity about the nature of

proofs, in mathematics and all mathematic aligned subjects. And of course, within

computer science logic has a large role to play I mean it has applications to program and

system specification and verification. Logic is also used as a declarative programming

language many of you must have studied in studied prolog in programming languages. It

is there equation logic is widely used in constraint programming.

And of course, in this there this hot and important area of the improving with in areas of

mathematics and outside. So, let us start with formal logic will let us start every body of

course, knows propositional logic, but it is necessary for us to establish notation and

notation and conventions all and so far. So, what I will do is I will weekly go through

propositional logic and then we will start with we will spend a lot more time on logic and

some other logics. But propositional logic forms a basis for all other logics therefore, it is

important to sort of locate it.

So, it is important to establish notation especially because I have peculiar believes and

notation that is one reason probably the most important reason. And therefore, much of

my notation may not be found in normal text books so, but however we live with my

notation because is obviously better than all other notation. So, and also we need what I

will do is I will take a distinctly algebraic view of the whole subject.

(Refer Slide Time: 02:58)

In fact logic is essentially an algeberzation of reason, and no book actually tells you that,

but it is implied. And therefore, I will take a distinctly algebraic view point. The whole

idea of algeberzation as it was inspired, essentially through Euclidian geometry was that

it was much harder to deal with the nature of proofs and there correctness, with in a

geometrical reasoning system. However if you algebrised it somehow things become

easier to at least verify whether, whether certain proofs are correct firstly.

Secondly algeberzation means also to it was never specified by anybody even logicians.

Algeberzation also means using a formal language and programming languages for

example, and all formal languages are actually inherently algebraic in nature. So, there

are two primary viewpoints in mathematics, one is algebra and the other is geometry.

And a large part of the effort of formularization of mathematics and these two forms

have actually keep kept on. So, you can think of you can think of in this way when

coordinate geometric came that was essentially in algeberzation geometry.

So, you could I mean so, the notions like lines and lines and points and so on could

essentially be specified is some equations. So, as algebraic equations so, you so, the

relationship between algebra and geometry has always been I mean there are looked

different the nature of proofs is different. But they always interacted with each other so

the notion so but notion by logic is algebraic in that sense that is a formal language

which basically this is by know all of you know that all programming languages are

essentially some kinds of term algebras, right?

All formal languages are some kinds of algebras you can think of any programming

language as essentially as set of basic constructs with some operators. The programming

language constructs are essential with operators. So, the moment and then you can think

about equation reasoning, you can think about specifying things as identity equations is a

general term for also identities, it is not just for solving equations. On the other hand the

concept of recursion and programming language is it is elf is actually, the concept of

solving an equation in an unknown. Namely that name that is being specified repulsively.

So, there is any formal language is actually algebraic in nature what logic gives you from

geometry is really the notion of the assimilation essentially inspired by Euclid’s

elements. Essentially the idea that there are few basic axioms of postulates and

everything else should be derived as a theorem from this basic postulates and axioms.

So, that is the interactions between algebra and geometry and since where essentially

dealing with it as a formulized system we look at it algebraic mostly algebraic to set the

stage for the algebra.

(Refer Slide Time: 07:08)

The first thing of course, as I said yesterday was that we will talk about truth and

falsehood. Truth and falsehood as far we have concerned, the underlined model of the

truth and falsehood is just two values right belonging to a set 0 and 1. And I am using

brown color because it is very down to earth. So, 0 and 1 are the Boolean set you can

regard it as a being embedded within the natural numbers, or you can regard it as a being

separate from the natural numbers. But either way it is essentially a semantics will all be

specified in terms of this Boolean algebra. And this Boolean algebra I have also defined

it in some peculiar pattern.

Well that this is inverse operation and there is this product operation and there is this

summation operation and then there are these two relations less than are equal to. So, any

algebraic system, as you know consist of a carrier set a collection of operations and a

collection of relations and that is what our Boolean algebra. And Boolean algebra of

course, is specified as set equations, set identities and remember that we are going to we

are doing mathematical logic in which we are using the tools of mathematics itself to

specified logic, also to deal with the notions of reasoning in logic.

So, we have the two element Boolean algebra whose, where the operations take there

usually mean. So, you can regard this dot either as a product operation or else the

minimum, minimum operation minimum numbers taken from this set. And this plus of

course, is Boolean summation and not addition, so there are operators with in the

Boolean algebra. So, we just as take for granted this algebraic system and all it is

properties.

And this algebraic system and all it is properties they are going to form the basis of the

notions of truth and falsehood, on which the language of logic is going to be build. So,

the language of logic and the meanings, there is syntax and there is semantics. So, if it is

syntax we have to it the semantics the meanings will be expressed in terms of this

notions of truth and falsehood. And this is the most concise way I could think of

representing truth and falsehood.

Now, so you have you all studied these Boolean algebras and there properties and

various things. So, if for example, you could think of I mean there is there is also another

kind of duality which goes on what that is that a model construction, and in a certain way

the hardware circuit that you have studied about are really like morals of this Boolean

algebra. But when you study hardware circuit is as models of this Boolean algebra there

you are looking at this Boolean algebra itself as a language, the expressions of this

Boolean algebra as a language whose meanings are given through the working of those

circuit and gates or gates whatever not gates so on.

So, on the other hand what we are going to do is we are going to take this algebra itself

as well understood and we are going to build language, whose meanings we are going to

express in terms of this algebra. So, the question of so in mathematical logic therefore,

depending on the view point, certain things be can be models or they can be object of

study.

(Refer Slide Time: 11:43)

So, these operators I am going to define them in terms of in terms of the natural numbers

as far if I think of them as essentially the subsets of the naturals. I have to just ensure

however in any algebraic system, I have to ensure that the operators are closed on the

carriers right. We should not we should not have to go out outside the carrier set. So,

these operators I will just think of them as this is the most it is a convenient way to think

of them. So, this minus that you see is not a really a part of the Boolean algebra, but this

is actually a part the natural numbers the subtraction operation, and the natural numbers

max and mean are also operations on natural numbers.

And then of course, the notion the notions of less than or equal to an equal to an Boolean

algebra or well understood, though equality is actually a very (()) object certain relation

and we will have the need to define various kinds of equality. So, for example, even in

the case of programming languages, when you actually copy a program straight of let us

say from one file A to another file B, A and B are equal in certain senses.

A and B are equal in the sense that they are both synthetically identical, that is the kind

of equality there A and B are A and B are also equal because, since they are identical

copies the meanings of the two programs are also the same. So, they are so they are equal

as programs, they are equal in terms of their program behavior they are asymptotically

identical, there also equal in their programming equation. How are the two files A and B

are not the same file. So, in terms of are A and B the same object they are not they are

basically different objects and therefore, they are not equal in terms of their identity.

A simple distinguishing feature of A and B is that they would have different I nodes in

the operating system, it is they are not identity in the same element. So, equality has very

supple meanings, depending on how you look at. So, there is identity of elements, there

is asymptotic identity, but between different elements. There is a equality that comes just

from the fact that I am calling the same object by two different names. So, there is copy

is one thing soft link is another kind of equality, hard link is the third kind of equality

and they all have certain differences. Most of you also done a course on operating system

and you already use you use soft links and hard links.

So, you can see the each of them has actually has a difference, so aliases is so two names

aliases for the same object, in which case that is the neat quality that goes even higher

than asymptotic identity, they are not only asymptotically identical they are also the

same object. At some point these differences between the various kinds of equality will

also become important. Unfortunately in mathematics truth equality is not greatly

distinguished for all it is supple variations. So, when we look at this Boolean algebras

model, we are looking at that equality within with in this Boolean algebra, whatever

Boolean algebra says are identical there identical and that is why I have this brown.

So, my color coding is also going to ah sort of distinguish this certain differences. So,

this equality is the mathematical equality defined on the Boolean algebra. So, I hope the

colors are clearly visible right now does anybody have problem with the colors. So, now

you have these two less than or equal you have this equality on the Boolean algebra, and

you less than or equal to where this less than or equal to comes actually from the natural

numbers. So, 0 is less than or equal to 1 and 1 is less than or equal to 1 or 0 is less than

or equal to 0 that is of the set.

However the Boolean algebra is a peculiar thing because I am using it as a representation

of truth and falsehood, it is possible to construct these consider these relations less than

or equal to and equal to, it is possible to look upon them also as operators, And I do not

mean as operators in the same sense in which any relation in a program is regarded as a

Boolean function. I do not mean in it the same sense it is because it is Boolean that this

relation has a Boolean is also an operation.

(Refer Slide Time: 17:46)

So, we will I will use this I will use a dot in front of these relations to regard them as a

operations, this is the problem and this is one problem with me then this sense that these

are not the things that most books which specify. Whereas I am actually what I am trying

to say now is that is these less than or equal to dot and equal to dot. I have essentially and

algebraic system, in which there are five operators instead of that, instead of three

operators and two relations I can think of them as five operators whenever I want to that

is the convenience that I will that is flexibility between that I will exercise, whenever I

need.

So, this is the interesting thing, so A is less than or equal to dot B where less than or

equal to dot is regarded as binary operation and it is equal to 1 and if A is actually less

than or equal to B and 0 otherwise and similarly, A equal to dot B is 1 if A is equal to B

in the Boolean algebra otherwise it is. So, that is like actually it is since they are talk they

are notions of truth and falsehood with 0 representing false and 1 representing truth. We

can also look at the truth and falsehood of this relations themselves with in the Boolean

algebra of operators.

(Refer Slide Time: 19:27)

So, the actual so we will start with propositional logic and establish your notation, we

start with a set A which is a countably infinite collection of propositional atoms, if you

like there is another word for it. So, we have so we are essentially defining a language,

and we are going to define it algebra. So, you have a collection A of atoms accountably

infinite collection everybody understand count ability infinity and so on. So, it is count

ably infinite so it is not it is not unaccountably infinite for example, and it is not finite it

is not finite because every time I will require a fresh atom, I should be able to get on.

And then I have a collection of operators omega and I am going to represent these

propositional logic elements in green. So, this is the notation I am going to use for the

various operators, the first one is not, the second one is and, the third one is or the fourth

one is a conditional if then, and the fifth one is the by condition. So, these are the set of

operators and they are disjoint from A. And each operator has a fixed clarity alpha with a

negation being a unary operator and all other operators being binary.

And of course, in addition to this of course, we will use various kinds of parenthesis as

grouping for grouping, and for what we say is that p naught is the smallest set generated

from A and omega, there anybody who does not understand this last sentence. You do

not understand that. So, what we will do is we will give an alternative definition in terms

of ((Refer Time: 21:50)) that is standard practice in programming languages. So, we will

follow that right so then I will come back to what this means by the small set generated

from A and omega.

(Refer Slide Time: 22:06)

So you are familiar with the ((Refer Time: 22:08)) for defining the syntax of the

programming languages, no? It’s like this listen carefully to what I am saying, so this one

first thing says that I am going to use.

(Refer Slide Time: 22:30)

Phi and psi as what are known as variables ranging over p naught. So, phi and psi

represent typical elements of this language of propositional logic. So, it is like let phi be

an element of language of proposition logic, let us psi be another element of

propositional logic then. So, the phi and the psi occur on the left hand side to essentially

specify how I am going to construct propositions from the basic elements. So, A which I

wrote in green on this slide, A is a proposition I am sorry each member of A is

proposition.

And if you look here the next clause essential is says so this A here essentially says that

every member of A is a proposition. So, that means we started with the collection of

propositional atoms and that is itself a subset of the set of propositions set of elements of

this language. The next class says that I take any proposition and let phi be any

proposition and if I put a negation, then this is also a proposition. Now, for the binary

operators, essentially what I am saying is if phi and psi are propositions then this is a

proposition.

So, similarly, I can say for or, arrow and so, what are we doing? Starting from the

countably infinite set of atoms A, they are constructing proposition compound

propositions from the atomic propositions by using these operators. And what we are

also saying and this needs to emphasize, be emphasized is that besides these nothing else

is a proposition. So, what we are saying is that you cannot take any junk elements from

outside and combined them with the operators of the propositional logic in order to get

any proposition, is it clear? So, this is how programming languages are defined by this is

known as the form I have actually modified the form modified for the purpose of just

defining the language in a brief in a concise function.

So, this so this notion smallest is that suppose if you dint restrict yourself to A, you took

some set larger than A and started generating compound propositions, then this smallest

world’s smallest ensures that all propositions which contain all elements, outside the

operators outside the set A are all thrown out, even within the set A and the operators if

you construct something like this.

(Refer Slide Time: 27:42)

This is also thrown out, this is also not a this is something that can be generated by this

right. So, essentially what we are saying is that this the language has to be defined it in

such a way that the compiler can pars any compiler for this language can pars the

language meaningfully, it is like saying that it should be compliable. So, this last

sentence nothing else is a proposition and this phrase is smallest set generated, all

essentially say that it should be compliable and there should be no parsing errors. So, this

is so these are known as sentences, so in fact propositional logic is also called sentential

logic. And their main motivation is that somehow since we are interested in truth and

falsehood.

We are interested in statement about which, it can be stated whether they are true or they

are false. So, it does not include statements, even from the natural language which are

not of this form. So for example, it does not statements which are like questions, it does

not include statements which are like commands. You know go and do this home work I

mean that is a command to which normally you cannot assign a value of true or false. So,

it refers to essentially comes from the linguistic philosophy in school, it refers to that

subset of natural language consisting of those full sentences, for which a truth value may

be assigned, for which it is at least theoretically it is possible to say, whether they are

true or false.

So, that is what our syntax is going to, are there any questions? Do you have any

questions?

Student: ((Refer Time: 30:30)

A sentences let us say a string of the language, however a sentence is a string of the

language, but of course, the strings of the language contain in addition to elements from

the set of atoms and the operators. They also contain these parenthesis so, for example.

So, this so just as this I mean you cannot have sentences like this for example, ya or and

you cannot have sentences like this for example. I mean the parenthesis have to match

this and that on the usual the usual things that are associated with the formal language.

One of the reasons for using parenthesis is to is to remove ambiguity, the safest thing to

do is to use a fully parenthesized language and what this BNF this BNF you are all

familiar with the BNF and it stands with the backus naur form and it is a standard thing

that is used for design defining the syntax of all programming languages. So, this BNF

essentially gives completely parenthesized notation for proposition logic r. And in

general of course, a parenthesis, a completely parenthesis notation is safe, but in general

when you when we actually write we would not like to put parenthesis. So, the normal

thing is to define. I will just proceed ahead, I will just proceed ahead with the normal

thing is to define a precedence of operators.

(Refer Slide Time: 32:45)

So, let us look at the precedence, this is true starting from your school mathematics. So,

what we are essentially saying is that this by conditional has the low, so we will follow

the convention that this by conditional has the lowest precedence, followed by the

conditional, followed by or, followed by and, and the negation has the highest. So, it is

often stated that this is the highest precedence, it is also it is also used in the form that

this binds tightest. I am most of you who have done a course on programming languages

would be familiar with this thing right?

Going back to your school mathematics there is there is this precedence rule, precedence

rules also apply for arithmetic expressions. In the sense that additions has lower

precedence than multiplication and the negative bind tightest. So, you can so that is of

course, a unary negation, there is a subtraction binds like addition, but you have to and

you use grouping of you use brackets and parenthesis, only when you want to over write

the precedence, right?

All that is of course, purely matter of dealing with strings, but we do not want to actually

look at this way, we want to look this film you want to look at all these things essentially

instead of looking at the strings and breaking your heads about parenthesis and so on and

so forth. The simplest thing to do is to look up on them as essentially trees. So, you can

think of since all these well formed, this are this are what are what are known as well

formed sentences.

(Refer Slide Time: 35:18)

So, here the operator precedence convention, which essentially says that negation has the

highest precedence and this should be the I am sorry, this is wrong by conditional which

have written here has the lowest precedence here. So but more importantly as I said this

kind of thing is dealing with strings and parenthesis and so on so forth is completely is a

completely wasteful activity, which can be taken care of by any machine. On the other

hand what we would like to think of these well formed formulate, these are known as the

well formed formulate. This well formed formulate we would like to view them as trees,

essentially abstracts syntax tress. So, you all of you have studied in programming

languages, the notion of an abstract syntax tree. So, the when you, when I construct a

well formed formula like.

(Refer Slide Time: 36:24)

Let us assume that small p is an atomic proposition, small q is an atomic proposition and

r is an atomic proposition. Now, this is essentially a well formed formula, actually this is

a completely parenthesized formula, and what this represents is a tree is an abstract

syntax tree, in which I have as a root node the and operator. And as which has two sub

trees, the right sub tree is essentially just a leaf node consisting of the proposition r, the

left sub tree is a negation under which there is a sub tree, whose roots is or and of two

atomic propositions p and q. If you view, essentially we can think of parenthesis…

(Refer Slide Time: 37:56)

As just being used to render linearly these trees are meaning are these trees, I mean what

we mean are these obstacles syntax trees, but in order to able to write in a linear form we

use parenthesis and typically with this precedence convention, we would write this

linearly essentially just this.

(Refer Slide Time: 38:25)

Naught p or q and r and this therefore, parenthesis are not necessary not really necessary,

except when you want to ensure grouping in a particular order. So, these two well

formed formulas are going to be considered, syntactically I equal because the only

difference is in the because the only difference is in the use of in the removal of reddened

parenthesis, right? According to the precedence convention, so we will think of these as

essentially being syntactically identical.

So, we will what we will do now is shall this is going to be a basic tool set. And

whenever I mention a proposition it is up to syntactic identity. Basically think of this

way, two propositions written differently are syntactically identical if they have the same

abstracts syntax tree, is that fine? So, as long they have the same abstracts syntax tree in

which no parenthesis are used, we consider them to be syntactically identical, right? I

will stop here today.

