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Propositional Logic Syntax 

So, let us just briefly recap. So, I just say the whole point about the logic and computer 

science is that we have somehow interested in mechanization.  
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It is sort of fundamental, can be used for checking getting clarity about the nature of 

proofs, in mathematics and all mathematic aligned subjects. And of course, within 

computer science logic has a large role to play I mean it has applications to program and 

system specification and verification. Logic is also used as a declarative programming 

language many of you must have studied in studied prolog in programming languages. It 

is there equation logic is widely used in constraint programming.  

And of course, in this there this hot and important area of the improving with in areas of 

mathematics and outside. So, let us start with formal logic will let us start every body of 

course, knows propositional logic, but it is necessary for us to establish notation and 

notation and conventions all and so far. So, what I will do is I will weekly go through 

propositional logic and then we will start with we will spend a lot more time on logic and 



some other logics. But propositional logic forms a basis for all other logics therefore, it is 

important to sort of locate it. 

So, it is important to establish notation especially because I have peculiar believes and 

notation that is one reason probably the most important reason. And therefore, much of 

my notation may not be found in normal text books so, but however we live with my 

notation because is obviously better than all other notation. So, and also we need what I 

will do is I will take a distinctly algebraic view of the whole subject. 
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In fact logic is essentially an algeberzation of reason, and no book actually tells you that, 

but it is implied. And therefore, I will take a distinctly algebraic view point. The whole 

idea of algeberzation as it was inspired, essentially through Euclidian geometry was that 

it was much harder to deal with the nature of proofs and there correctness, with in a 

geometrical reasoning system. However if you algebrised it somehow things become 

easier to at least verify whether, whether certain proofs are correct firstly. 

Secondly algeberzation means also to it was never specified by anybody even logicians. 

Algeberzation also means using a formal language and programming languages for 

example, and all formal languages are actually inherently algebraic in nature. So, there 

are two primary viewpoints in mathematics, one is algebra and the other is geometry. 

And a large part of the effort of formularization of mathematics and these two forms 



have actually keep kept on. So, you can think of you can think of in this way when 

coordinate geometric came that was essentially in algeberzation geometry.  

So, you could I mean so, the notions like lines and lines and points and so on could 

essentially be specified is some equations. So, as algebraic equations so, you so, the 

relationship between algebra and geometry has always been I mean there are looked 

different the nature of proofs is different. But they always interacted with each other so 

the notion so but notion by logic is algebraic in that sense that is a formal language 

which basically this is by know all of you know that all programming languages are 

essentially some kinds of term algebras, right? 

All formal languages are some kinds of algebras you can think of any programming 

language as essentially as set of basic constructs with some operators. The programming 

language constructs are essential with operators. So, the moment and then you can think 

about equation reasoning, you can think about specifying things as identity equations is a 

general term for also identities, it is not just for solving equations. On the other hand the 

concept of recursion and programming language is it is elf is actually, the concept of 

solving an equation in an unknown. Namely that name that is being specified repulsively. 

So, there is any formal language is actually algebraic in nature what logic gives you from 

geometry is really the notion of the assimilation essentially inspired by Euclid’s 

elements. Essentially the idea that there are few basic axioms of postulates and 

everything else should be derived as a theorem from this basic postulates and axioms. 

So, that is the interactions between algebra and geometry and since where essentially 

dealing with it as a formulized system we look at it algebraic mostly algebraic to set the 

stage for the algebra. 
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The first thing of course, as I said yesterday was that we will talk about truth and 

falsehood. Truth and falsehood as far we have concerned, the underlined model of the 

truth and falsehood is just two values right belonging to a set 0 and 1. And I am using 

brown color because it is very down to earth. So, 0 and 1 are the Boolean set you can 

regard it as a being embedded within the natural numbers, or you can regard it as a being 

separate from the natural numbers. But either way it is essentially a semantics will all be 

specified in terms of this Boolean algebra. And this Boolean algebra I have also defined 

it in some peculiar pattern. 

Well that this is inverse operation and there is this product operation and there is this 

summation operation and then there are these two relations less than are equal to. So, any 

algebraic system, as you know consist of a carrier set a collection of operations and a 

collection of relations and that is what our Boolean algebra. And Boolean algebra of 

course, is specified as set equations, set identities and remember that we are going to we 

are doing mathematical logic in which we are using the tools of mathematics itself to 

specified logic, also to deal with the notions of reasoning in logic.  

So, we have the two element Boolean algebra whose, where the operations take there 

usually mean. So, you can regard this dot either as a product operation or else the 

minimum, minimum operation minimum numbers taken from this set. And this plus of 

course, is Boolean summation and not addition, so there are operators with in the 



Boolean algebra. So, we just as take for granted this algebraic system and all it is 

properties.  

And this algebraic system and all it is properties they are going to form the basis of the 

notions of truth and falsehood, on which the language of logic is going to be build. So, 

the language of logic and the meanings, there is syntax and there is semantics. So, if it is 

syntax we have to it the semantics the meanings will be expressed in terms of this 

notions of truth and falsehood. And this is the most concise way I could think of 

representing truth and falsehood. 

Now, so you have you all studied these Boolean algebras and there properties and 

various things. So, if for example, you could think of I mean there is there is also another 

kind of duality which goes on what that is that a model construction, and in a certain way 

the hardware circuit that you have studied about are really like morals of this Boolean 

algebra. But when you study hardware circuit is as models of this Boolean algebra there 

you are looking at this Boolean algebra itself as a language, the expressions of this 

Boolean algebra as a language whose meanings are given through the working of those 

circuit and gates or gates whatever not gates so on. 

So, on the other hand what we are going to do is we are going to take this algebra itself 

as well understood and we are going to build language, whose meanings we are going to 

express in terms of this algebra. So, the question of so in mathematical logic therefore, 

depending on the view point, certain things be can be models or they can be object of 

study. 
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So, these operators I am going to define them in terms of in terms of the natural numbers 

as far if I think of them as essentially the subsets of the naturals. I have to just ensure 

however in any algebraic system, I have to ensure that the operators are closed on the 

carriers right. We should not we should not have to go out outside the carrier set. So, 

these operators I will just think of them as this is the most it is a convenient way to think 

of them. So, this minus that you see is not a really a part of the Boolean algebra, but this 

is actually a part the natural numbers the subtraction operation, and the natural numbers 

max and mean are also operations on natural numbers. 

And then of course, the notion the notions of less than or equal to an equal to an Boolean 

algebra or well understood, though equality is actually a very (( )) object certain relation 

and we will have the need to define various kinds of equality. So, for example, even in 

the case of programming languages, when you actually copy a program straight of let us 

say from one file A to another file B, A and B are equal in certain senses. 

A and B are equal in the sense that they are both synthetically identical, that is the kind 

of equality there A and B are A and B are also equal because, since they are identical 

copies the meanings of the two programs are also the same. So, they are so they are equal 

as programs, they are equal in terms of their program behavior they are asymptotically 

identical, there also equal in their programming equation. How are the two files A and B 



are not the same file. So, in terms of are A and B the same object they are not they are 

basically different objects and therefore, they are not equal in terms of their identity. 

A simple distinguishing feature of A and B is that they would have different I nodes in 

the operating system, it is they are not identity in the same element. So, equality has very 

supple meanings, depending on how you look at. So, there is identity of elements, there 

is asymptotic identity, but between different elements. There is a equality that comes just 

from the fact that I am calling the same object by two different names. So, there is copy 

is one thing soft link is another kind of equality, hard link is the third kind of equality 

and they all have certain differences. Most of you also done a course on operating system 

and you already use you use soft links and hard links.  

So, you can see the each of them has actually has a difference, so aliases is so two names 

aliases for the same object, in which case that is the neat quality that goes even higher 

than asymptotic identity, they are not only asymptotically identical they are also the 

same object. At some point these differences between the various kinds of equality will 

also become important. Unfortunately in mathematics truth equality is not greatly 

distinguished for all it is supple variations. So, when we look at this Boolean algebras 

model, we are looking at that equality within with in this Boolean algebra, whatever 

Boolean algebra says are identical there identical and that is why I have this brown. 

So, my color coding is also going to ah sort of distinguish this certain differences. So, 

this equality is the mathematical equality defined on the Boolean algebra. So, I hope the 

colors are clearly visible right now does anybody have problem with the colors. So, now 

you have these two less than or equal you have this equality on the Boolean algebra, and 

you less than or equal to where this less than or equal to comes actually from the natural 

numbers. So, 0 is less than or equal to 1 and 1 is less than or equal to 1 or 0 is less than 

or equal to 0 that is of the set.  

However the Boolean algebra is a peculiar thing because I am using it as a representation 

of truth and falsehood, it is possible to construct these consider these relations less than 

or equal to and equal to, it is possible to look upon them also as operators, And I do not 

mean as operators in the same sense in which any relation in a program is regarded as a 

Boolean function. I do not mean in it the same sense it is because it is Boolean that this 

relation has a Boolean is also an operation. 
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So, we will I will use this I will use a dot in front of these relations to regard them as a 

operations, this is the problem and this is one problem with me then this sense that these 

are not the things that most books which specify. Whereas I am actually what I am trying 

to say now is that is these less than or equal to dot and equal to dot. I have essentially and 

algebraic system, in which there are five operators instead of that, instead of three 

operators and two relations I can think of them as five operators whenever I want to that 

is the convenience that I will that is flexibility between that I will exercise, whenever I 

need.  

So, this is the interesting thing, so A is less than or equal to dot B where less than or 

equal to dot is regarded as binary operation and it is equal to 1 and if A is actually less 

than or equal to B and 0 otherwise and similarly, A equal to dot B is 1 if A is equal to B 

in the Boolean algebra otherwise it is. So, that is like actually it is since they are talk they 

are notions of truth and falsehood with 0 representing false and 1 representing truth. We 

can also look at the truth and falsehood of this relations themselves with in the Boolean 

algebra of operators. 
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So, the actual so we will start with propositional logic and establish your notation, we 

start with a set A which is a countably infinite collection of propositional atoms, if you 

like there is another word for it. So, we have so we are essentially defining a language, 

and we are going to define it algebra. So, you have a collection A of atoms accountably 

infinite collection everybody understand count ability infinity and so on. So, it is count 

ably infinite so it is not it is not unaccountably infinite for example, and it is not finite it 

is not finite because every time I will require a fresh atom, I should be able to get on. 

And then I have a collection of operators omega and I am going to represent these 

propositional logic elements in green. So, this is the notation I am going to use for the 

various operators, the first one is not, the second one is and, the third one is or the fourth 

one is a conditional if then, and the fifth one is the by condition. So, these are the set of 

operators and they are disjoint from A. And each operator has a fixed clarity alpha with a 

negation being a unary operator and all other operators being binary. 

And of course, in addition to this of course, we will use various kinds of parenthesis as 

grouping for grouping, and for what we say is that p naught is the smallest set generated 

from A and omega, there anybody who does not understand this last sentence. You do 

not understand that. So, what we will do is we will give an alternative definition in terms 

of ((Refer Time: 21:50)) that is standard practice in programming languages. So, we will 



follow that right so then I will come back to what this means by the small set generated 

from A and omega. 
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So you are familiar with the ((Refer Time: 22:08)) for defining the syntax of the 

programming languages, no? It’s like this listen carefully to what I am saying, so this one 

first thing says that I am going to use. 
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Phi and psi as what are known as variables ranging over p naught. So, phi and psi 

represent typical elements of this language of propositional logic. So, it is like let phi be 



an element of language of proposition logic, let us psi be another element of 

propositional logic then. So, the phi and the psi occur on the left hand side to essentially 

specify how I am going to construct propositions from the basic elements. So, A which I 

wrote in green on this slide, A is a proposition I am sorry each member of A is 

proposition.  

And if you look here the next clause essential is says so this A here essentially says that 

every member of A is a proposition. So, that means we started with the collection of 

propositional atoms and that is itself a subset of the set of propositions set of elements of 

this language. The next class says that I take any proposition and let phi be any 

proposition and if I put a negation, then this is also a proposition. Now, for the binary 

operators, essentially what I am saying is if phi and psi are propositions then this is a 

proposition.  

So, similarly, I can say for or, arrow and so, what are we doing? Starting from the 

countably infinite set of atoms A, they are constructing proposition compound 

propositions from the atomic propositions by using these operators. And what we are 

also saying and this needs to emphasize, be emphasized is that besides these nothing else 

is a proposition. So, what we are saying is that you cannot take any junk elements from 

outside and combined them with the operators of the propositional logic in order to get 

any proposition, is it clear? So, this is how programming languages are defined by this is 

known as the form I have actually modified the form modified for the purpose of just 

defining the language in a brief in a concise function. 

So, this so this notion smallest is that suppose if you dint restrict yourself to A, you took 

some set larger than A and started generating compound propositions, then this smallest 

world’s smallest ensures that all propositions which contain all elements, outside the 

operators outside the set A are all thrown out, even within the set A and the operators if 

you construct something like this. 
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This is also thrown out, this is also not a this is something that can be generated by this 

right. So, essentially what we are saying is that this the language has to be defined it in 

such a way that the compiler can pars any compiler for this language can pars the 

language meaningfully, it is like saying that it should be compliable. So, this last 

sentence nothing else is a proposition and this phrase is smallest set generated, all 

essentially say that it should be compliable and there should be no parsing errors. So, this 

is so these are known as sentences, so in fact propositional logic is also called sentential 

logic. And their main motivation is that somehow since we are interested in truth and 

falsehood. 

We are interested in statement about which, it can be stated whether they are true or they 

are false. So, it does not include statements, even from the natural language which are 

not of this form. So for example, it does not statements which are like questions, it does 

not include statements which are like commands. You know go and do this home work I 

mean that is a command to which normally you cannot assign a value of true or false. So, 

it refers to essentially comes from the linguistic philosophy in school, it refers to that 

subset of natural language consisting of those full sentences, for which a truth value may 

be assigned, for which it is at least theoretically it is possible to say, whether they are 

true or false. 



So, that is what our syntax is going to, are there any questions? Do you have any 

questions? 

Student: ((Refer Time: 30:30) 

A sentences let us say a string of the language, however a sentence is a string of the 

language, but of course, the strings of the language contain in addition to elements from 

the set of atoms and the operators. They also contain these parenthesis so, for example. 

So, this so just as this I mean you cannot have sentences like this for example, ya or and 

you cannot have sentences like this for example. I mean the parenthesis have to match 

this and that on the usual the usual things that are associated with the formal language. 

One of the reasons for using parenthesis is to is to remove ambiguity, the safest thing to 

do is to use a fully parenthesized language and what this BNF this BNF you are all 

familiar with the BNF and it stands with the backus naur form and it is a standard thing 

that is used for design defining the syntax of all programming languages. So, this BNF 

essentially gives completely parenthesized notation for proposition logic r. And in 

general of course, a parenthesis, a completely parenthesis notation is safe, but in general 

when you when we actually write we would not like to put parenthesis. So, the normal 

thing is to define. I will just proceed ahead, I will just proceed ahead with the normal 

thing is to define a precedence of operators. 
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So, let us look at the precedence, this is true starting from your school mathematics. So, 

what we are essentially saying is that this by conditional has the low, so we will follow 

the convention that this by conditional has the lowest precedence, followed by the 

conditional, followed by or, followed by and, and the negation has the highest. So, it is 

often stated that this is the highest precedence, it is also it is also used in the form that 

this binds tightest. I am most of you who have done a course on programming languages 

would be familiar with this thing right? 

Going back to your school mathematics there is there is this precedence rule, precedence 

rules also apply for arithmetic expressions. In the sense that additions has lower 

precedence than multiplication and the negative bind tightest. So, you can so that is of 

course, a unary negation, there is a subtraction binds like addition, but you have to and 

you use grouping of you use brackets and parenthesis, only when you want to over write 

the precedence, right? 

All that is of course, purely matter of dealing with strings, but we do not want to actually 

look at this way, we want to look this film you want to look at all these things essentially 

instead of looking at the strings and breaking your heads about parenthesis and so on and 

so forth. The simplest thing to do is to look up on them as essentially trees. So, you can 

think of since all these well formed, this are this are what are what are known as well 

formed sentences.  
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So, here the operator precedence convention, which essentially says that negation has the 

highest precedence and this should be the I am sorry, this is wrong by conditional which 

have written here has the lowest precedence here. So but more importantly as I said this 

kind of thing is dealing with strings and parenthesis and so on so forth is completely is a 

completely wasteful activity, which can be taken care of by any machine. On the other 

hand what we would like to think of these well formed formulate, these are known as the 

well formed formulate. This well formed formulate we would like to view them as trees, 

essentially abstracts syntax tress. So, you all of you have studied in programming 

languages, the notion of an abstract syntax tree. So, the when you, when I construct a 

well formed formula like. 
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Let us assume that small p is an atomic proposition, small q is an atomic proposition and 

r is an atomic proposition. Now, this is essentially a well formed formula, actually this is 

a completely parenthesized formula, and what this represents is a tree is an abstract 

syntax tree, in which I have as a root node the and operator. And as which has two sub 

trees, the right sub tree is essentially just a leaf node consisting of the proposition r, the 

left sub tree is a negation under which there is a sub tree, whose roots is or and of two 

atomic propositions p and q. If you view, essentially we can think of parenthesis… 
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As just being used to render linearly these trees are meaning are these trees, I mean what 

we mean are these obstacles syntax trees, but in order to able to write in a linear form we 

use parenthesis and typically with this precedence convention, we would write this 

linearly essentially just this. 
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Naught p or q and r and this therefore, parenthesis are not necessary not really necessary, 

except when you want to ensure grouping in a particular order. So, these two well 

formed formulas are going to be considered, syntactically I equal because the only 



difference is in the because the only difference is in the use of in the removal of reddened 

parenthesis, right? According to the precedence convention, so we will think of these as 

essentially being syntactically identical. 

So, we will what we will do now is shall this is going to be a basic tool set. And 

whenever I mention a proposition it is up to syntactic identity. Basically think of this 

way, two propositions written differently are syntactically identical if they have the same 

abstracts syntax tree, is that fine? So, as long they have the same abstracts syntax tree in 

which no parenthesis are used, we consider them to be syntactically identical, right? I 

will stop here today. 


