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The Semantics of Predicate Logic 
 

So, today we will start the semantics of predicate logic; before that let us just quickly go 

through the syntax of predicate logic. 
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So, we have a countably infinite collection of variable symbols and a set of terms and a 

countably infinite collection of atomic predicate symbols. 
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And we are usually interested in a signature. So, that reflects the algebraic nature of most 

of whatever we do. For simplicity we will assume a 1-sorted signature where each 

function and each predicate symbol atomic predicate symbol has some arity specified by 

this short symbol s and it is by this pattern basically, right, where s is just some pattern. 

So, if it was a many sorted signature what we would have is many sort symbol, say, s 1, s 

2, s 3, etcetera, as many as there are sorts, which is something that usually is required 

when you are dealing with a programming language because for programming language. 

For example, it can be regarded as a many sorted algebra based on some basic sorts like 

int, bull, real, string character and so on so forth. And there are functions which for 

example, the length of a string is a function which goes from strings to integers and so 

you have functions which bridge sorts; you have conversion functions from let us say 

real’s to integers, integers to real’s and so on. So, you have many such functions and 

predicates. So, the first thing of course, is to realize that one sort it is possible to view 

many sorted algebras also as 1-sorted as a single 1-sorted algebra in which the various 

sorts are distinguished by certain new atomic predicates which tell you whether 

something belongs to a certain sort or not, right. So, we will keep it simple and we will 

just worry about a 1-sorted signature. 



(Refer Slide Time: 03:00) 

 

And the other thing is right. So, this is the set of terms which depending upon arity we 

will use the usual mathematical notation for terms in prefix fashion, but that is in the 

most general case. Sometimes of course, functions are especially binary functions have 

got an infix notation, but since we are interested only in trees it does not matter to us 

whether we are looking at it in infix. We will choose the most convenient notation yeah. 

Then there is particular case of constants which are essentially zero array functions, very 

often we will not write these parentheses for those constants, and most often we will use 

a, b, c, d, etcetera as constant symbols. 
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This is the syntax of predicate logic of which of course, the most important things are 

this specification of truth for the atomic predicate symbols, and for these two new 

operators called quantifiers. So, whatever notion on schematics we define should 

essentially take these into account and the signature in it. So, first order logic or predicate 

logic is a very general name, and it has to be parameterized by these signatures. So, we 

are talking about sigma formulas and sigma atomic formulas. So, therefore, it is 

parameterized on the signature, right. 
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We will use the same precedence conventions; in addition of course, I have this scoping. 

I use square brackets to delimit scope, because these quantifiers they are actually 

parameterized on the variable. They are operators which are parameterized on a variable, 

and that variable has a scope which is delimited by these square brackets, yeah. So, in 

that sense this collection of operations omega one unlike the propositional case is 

actually accountably infinite set of operations to view at. So, for each variable x 

belonging to the set of variables v for all x there is exist an operator called for all x and 

there exist an operators called there exist x, yeah. 

So, this is actually an infinite collection of operators, and we will give the semantics 

appropriately, yeah. So, we will concentrate on essentially these things, the usual 

precedence relations; there are these usual notions like depth and size and sub terms 



which are basically sub trees of the abstract syntax trees. There is this notion of variables 

of atom. 
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And because of the fact that you have quantifiers which actually have bound variables; 

we have to distinguish between free variables and bound variables. And for any 

quantifier q where q might be either for all there exist, q x psi consist of the free 

variables of q x psi consist of all the free variables of psi except x, and that is recursively 

defined. So, similarly we can talk about the sub formulas sub trees essentially of a 

formula regarded as an abstract syntax tree. 



(Refer Slide Time: 06:56) 

 

And finally, we will think of closures. Firstly it is important to state what a closed 

formula is. A closed formula is simply one which has no free variables. And in that sense 

the entire language of propositional logic actually dealt with closed formulae, yeah. 

There is also another importance for closed formulae, and that is that strictly speaking 

most of the theorems in a mathematical theory implicitly or explicitly are closed 

formulae. It will be expressed as closed formulae, and very often if it is implicit then 

what you do usually is you have a universal closure, which essentially means you look at 

the way the formula looks, look all the free variables in the formula and simply put a 

universal closure on all of them. 

So, most of our theorems essentially are of this nature. They are universally closed 

statements, and that is the way we will express them. And of course, when we talk of 

particular cases there is you can also think of an existential closure. And usually 

existential closure is made implicit in our mathematical theories by using constant 

symbols or particular kinds of symbols devoted to show that it is not universally closed. 

But to make these things explicit we will also define the universal closure operation 

which essentially means that if I were to take all the free variables in the formula and put 

a universal quantifier or an existential quantifier in front of the formula, then I essentially 

get its universal closure or existential closure. 



Of course, there could be other formulas which have some quantifier’s universal and 

some quantifier existential. So, these universal and existential closure formulas are 

important and general closed formulas are important. Also this is extra piece of notation 

just to say that they predicate the formula phi; it is actually just the formula phi, but this 

implicitly says that the set of its free variables is entirely contained in the set x 1 to x m. 

So, we just borrow these existential from standard mathematical notation and use them, 

right. So, now we are ready to proceed towards the semantics. 

So, one thing about the semantics of predicate logic is that the language itself is 

parameterized on a certain signature sigma. And so what we would call a model or 

semantics for the language parameterized on a certain signature sigma requires 

essentially what is known as sigma algebra. So, think of it this way. If you were to 

describe the theory of groups, then groups have a certain signature, a binary 

multiplicative operator, a constant element called the identity element and an inversion a 

unary inversion operator. 

And these three actually form the operations of a group and in addition you have may be 

the equality relation. So, think of it. So, that equality is an atomic predicate, right. So, 

you have a group in general defined by this signature of these three operations, a 

constant, a unary operation and a binary operation, and an atomic predicate namely 

equality. 
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So, when you describe groups, therefore, you are looking at essentially statements 

involving only elements taken from the signature, terms from that signature, form from 

that signature, right. And what you are saying is examples of groups would be particular 

sets; let us say like the integers with addition, negation and zero as identity element, and 

of course, integer equality as the only binary predicates and that is a group. So, integers 

under addition with the unary negation and zero form a structure for the signature sigma. 

You can also take let us say the real’s under multiplication, what? No, you cannot; there 

is a problem there, but anyway. 

So, you could take for example, the positive reals under multiplication and with 

reciprocal and one as identity element, and that is the structure which satisfies the same 

signature, okay. So, when you are looking at statements about a certain statements first 

order logic or predicate logic statements parameterized on a certain signature, then you 

are essentially looking at models also by models you are looking at structures which 

satisfy that statement for which that statement is true, right. So, that is what we will. So, 

we will given any signature sigma; we will look at a sigma structure or a sigma algebra 

which consist of a nonempty set. This non empty set like in the case of groups, it might 

be integers or it might be real’s, a positive real’s. 

So, this nonempty set is called the carrier of the algebra that is the algebraic terminology. 

A logical terminology is that it is a universe of discourse or it is a domain of the algebra, 

right. So, all elements that we are considering in the model essentially belong to this set 

A which is a carrier of the algebra. And of course, for each emery function symbol in the 

signature, you have an emery function on the carrier set, okay. So, what we will do is for 

definiteness we will subscript; of course, I am using the same thing; my models are 

brown in color. So, the color itself should tell you which is something that belong to the 

model, and what is something that belongs to the language. 

And of course, within the language I am distinguishing between a color of terms and the 

color of predicates. So, the green and violet should distinguish between them, but at the 

level of the model I am keeping everything brown in color, right. So, corresponding to 

every violet symbol f in sigma, there is a function of the same arity on the domain or on 

the universe of discourse, right, defined on that universe of discourse. So, including in 

the case of symbols which are constant symbols or zero array functions that they have to 

identified constant symbols also in their domain, right. 



So, in particular the identity element for groups has to be identified in the domain. So, in 

the case of group of positive real’s and multiplication the identity element is one; in the 

case of integer-integer group under addition, the identity element is zero and those have 

to be identified. And of course, a relation p A for each atomic predicate symbol, I am 

sorry this subscript A should not be there; for each atomic predicate symbol p in sigma 

there is a relation on this carrier set of this same arity and for completeness though it is 

not important. In case you have a predicate symbol which is of which is zero array, then 

essentially we regard that as an atomic proposition. 

So, which means it takes a value for which there is to be a value assigned from the set 

zero one which is our set of truth values, but this last point is just I have just written it for 

completeness, but usually it is not important. We never have a Boolean constant hanging 

around our theory of groups. I mean as simple as that we are. So, when the sigma algebra 

is understood or there is only one structure under consideration, then we will just omit 

this subscript A from all these functions and predicate. It tends to platter up the notations. 

So, we will throw that out. There are certain important things to realize here. One is that 

all these functions that we associate with function symbols are total functions. So, there 

are no partial functions that we consider; that is one thing to be noted. 
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And the only way to deal with partial functions is to actually talk about a corresponding 

relation in state. So, supposing you want to talk about the theory of a real’s under the 



division operation, right, with equality as let us say the only predicate symbol. Now the 

problem is normally we regard division as an operation, but division on the reals is not 

closed, right. So, which means that and division is therefore, a partial function on the 

real’s which means that the only way we have to deal with it in a first order framework is 

to actually define division instead as a ternary relation. 

So, if you have to deal with partial functions of arity m, we will just assume that there m 

plus 1 array relations. So, in that sense we do not actually lose anything. So, it makes 

things a little artificial, but on the other hand we do not lose any expressiveness because 

of this assumption here. So, we will treat partial functions essentially as relations, and 

therefore, there has to be an exact correspondence between the signatures, signature of 

the language and the signature structure; therefore, which means there will be 

corresponding atomic predicates associated with these partial functions, and they will 

essentially have the meaning of relations of appropriate arity in the structure, right. 
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The other thing is the other notational conventional we will use is. So, here is the simple 

example of a predicate like for all x there exist y such that x is less than x plus y. So, we 

will write predicates in this fashion, basically since less than and plus r usually used in 

infix notation, we will use them in infix notation. So, here is the structure with a carrier 

set which is the set of naturals. 



There is a single operation binary operation addition and a single binary relation less 

than the relation let us say, and you want to essentially describe statements about this 

structure in first order logic. So, this is a typical statement; strictly speaking you would 

write things in a prefix notation. They become sort of messy and unreadable. So, we will 

keep it readable by using infix notation wherever it is conventionally used. 
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So, of course, what we might do is we might take the theory of integers you might take 

the theory of monodies for example, and the natural numbers under addition with 

identity element zero. And what you might do is you might actually equip some other 

operation also; I mean you might actually add some other relations, may be you might 

have a less than and then you might have a divisor of relation and so on and so forth, 

right. So, it is quite possible that I might expand the signature sigma to another signature 

omega, right. So, we would say that as. So, let us look at it this way. 

Now if you expand this signature, then the corresponding structure also needs to be 

expanded, right. Basically there was a need to introduce some new symbols in the 

signature, because you are interested in certain relations of operations in that signature. 

So, you have to augment the structure also with those corresponding functions or 

relations, yeah. So, we will say that B is a structure an omega structure; given that sigma 

is a subset of omega, we will say that an omega structure B is an expansion of a sigma 

structure A if they both have the same domain of discourse. 



And every function symbol in A is also there in B and every predicate symbol in A is 

also there in B. And essentially what we are saying is the semantics the meanings of their 

individual functions and predicates in the structure A are preserved, and we are just 

expanding the set of operations and relations by something else. So, this expansion will 

be denoted A triangle B. So, this is here. 
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Now in the case of propositional logic of course, we had the notion of truth assignments 

where directly atomic propositions were given truth values from the set zero one. In the 

case of predicate logic, we are talking about parameterized propositions. So, the truth of 

a proposition might depend on its parameters. So, in particular what it means is it 

depends upon the values of the terms that occur in the proposition. So, what we require is 

a notion of a valuation, yeah So, we define a valuation as a function v which assigns to 

each variable in our variable set v and element from the domain of the sigma structure A. 

So, you have a particular model in mind let us say which has a carrier set and functions 

and relations for the various symbols in your signature. And now what we do is we 

assign to each variable symbol a value from that carrier set, yeah, and this structure along 

with a valuation will be called a sigma interpretation, yeah. So, what you are saying is 

you take any statement in predicate logic, and we are going to interpret it in a structure. 

And that statement and predicate logic it might have lots of free variables in which case 

you need some way to interpret those free variables as essentially values from the 



domain of that structure right. So, that is what the valuation v gives you. So, this ordered 

pair structure A along with a valuation is called as an interpretation sigma interpretation, 

right. 
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So, given a sigma interpretation the first thing of course, is to evaluate the terms, right. 

So, we proceed with this evaluation of terms, the value of a term t in the interpretation is 

defined by induction on the structure of that term. So, for any variable x I have this 

function called v which is parameterized on some. So, we are looking at the value of this 

term under this valuation v actually in the structure A, right; that is the way to look at it. 

So, for any variable of course, it is just whatever the valuation assigns to that variable; 

that is the value of the variable. In a certain sense that is the only meaning of that 

variable and for any term f of t 1 to t m where t 1 to t m is terms themselves. 

Corresponding to f in the structure there is an emery function f a; you apply it to the 

meanings of the individuals terms, right. 

So, this is your meaning function which for terms which courses through by structural 

induction to the lowest level. As usual sometimes we will write things like this, just like 

for predicates the free variables might be listed out; for terms also we might just all the 

variables that occur in that term could be listed out. Or in fact, more than the variables 

that occur in the term could be listed out, yeah. So, once you have evaluated that terms. 



So, once every term has been given a meaning in the structure A, you are essentially 

ready to interpret all the sentence all the predicates of the language, right. 
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But before that we have something called the coincidence lemma. This is a very simple 

lemma. Supposing you have two different valuations for the same structure; so, you have 

a single structure A and two different interpretations which differ only in the valuations. 

And for any term t, if the two valuations v and v prime give you the same value, then 

essentially the value of t under v is the same as the value of. I am sorry this should be t 

here, the value of t under v prime, yeah. 

And we will use a lot of shortcuts; sometimes given a term t of x 1 to x m we will and 

given that the variables x 1 to x m have some values a 1 to a m some constant values in 

this domain of the structure we will just write t a of a 1 to a m to denote the value of t of 

x 1 to x m instead of this more complicated way of writing things, yeah. Because 

especially this coincidence lemma essentially says that sometimes we are only interested 

in a certain subset of the variables; we are not interested in the entire lot of infinite 

variables set you have. So, it makes it more convenient to just write this, okay. 
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So, now I come to an important thing called a variant, yeah. So, I take two valuations. 

So, assume that I have got a single structure A for a single sigma structure A and I take 

two different valuations v and v prime and let me also take a subset of the variables v, a 

subset x of the variables v, then I would say v prime is an x variant of v or they are 

actually x variants of each other. If for every y for every variable that is not in x, the two 

valuations give the same value to the variable; assign the same value to the variable, 

okay. 

So, by x variants what you are saying essentially is that the two valuations might differ 

only for the values they are assigned to the variables in x, and for all other variables they 

give you the same value, right. So, very often when x is a singleton set, we just refer to 

them as singleton set containing a single variable x, we just refer to them as x variants, 

yeah, a small x variants. 
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And now we are ready to give the semantics of formulae. And what I will do is I will not 

worry about the propositional connectives, because the schematics of propositional 

connectives once you have got truth values are known to us. 
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So, we just assume that this is true for all of them. The only difference here is that here in 

the case of propositional logic we had this subscript tau which is a truth assignment; in 

our case now what we are going to have is a valuation. So, once you have specified truth 

value is for atomic proposition, then it is a trivial matter to look upon them as truth 



values themselves and give the semantics of the proposition connectives in an identical 

fashion, yeah, in an absolutely analogues fashion. So, we will not waste time on this. 

So, for any atomic predicate p of t 1 to t n under a valuation v, this predicate is true if 

having evaluated t 1 to t n under the same valuation v, you get essentially at n tupil. So, 

here we are assuming that p is a unary predicate for some value of n. This n tupil of 

values actually belongs to that relation p A which was defined as the corresponding 

relation for the atomic predicate symbol p. So, if it does belong to it of course, then you 

give the truth value one; otherwise, you give the truth values here, right. So, this is what.  

So, essentially what we are saying is atomic predicates, they become propositions once 

you give values to the terms, and the truth of that depends upon whether it belongs to the 

corresponding relation that you define for that predicate symbol or not, right; otherwise it 

is false. So, it is true if this n tupil belongs to p A and it is false otherwise. So, this is of 

course more interesting case. First you suppose that when your intuitive understanding of 

the universal quantifier is essentially that phi is true for whatever value you might assign 

x; in that sense the truth of this if this universally quantified statement for all x phi is true 

regardless of any value that might be assigned to x, yeah; that is an intuitive 

understanding of this universal quantifier. 

And in the in the case of the existential quantifier the intuitive understanding is that there 

is a particular value which you must give to x which will make phi true, and if such a 

particular value does exist in the structure A then you would say that there exist x phi is 

true. Note that in both cases in any mathematical theory the universally quantified and 

the existentially quantified statements are independent of that bound variable. And 

moreover in the case of the existential quantifier, you are not actually interested in the 

actual value unless you are designing an algorithm for it, right. As a pure mathematical 

statement you are not actually interested in the value; you just want to know the truth of 

existential statement. 

So, all you need to know is that there exist there exist such value x. In particular the 

reason this becomes important is that there is a difference between a constructive 

approach and a non-constructive approach. So, an algorithmic way of proving existence 

would actually find a value x which would make the statement true. A non-constructive 

approach might prove it by contradiction, but assume that there is no value and then 



attain some contradiction. And if you attain the contradiction you have proved that there 

exist a value, but since you did not construct the value you do not know what it is, and 

yet the statement would be true, right. 

So, there is there is something non-constructive about the way we are doing all our 

mathematics anyway; the moment you do proofs by contradiction you are being non-

constructive. So, what we are saying, therefore, is that all these quantified statements 

their truth of false it is independent of the values assigned to the bound variables right. 

But what does it mean now? I have got a particular valuation v and I am saying that this 

statement is true if and only if or at least I want to say that this universally quantified 

statement is true if and only if for any value in the domain that I might assign x, the 

predicate phi is true which means I am looking at all possible x variants of B. 

So, the free variables of this predicate phi will anyway get their values from the 

valuation B. The bound variables do not get the values from the valuation B; instead you 

consider all possible x variants for each bound variable x and then evaluate phi. So, think 

of it this way. If your domain A was infinite, then you are essentially considering an 

infinite number of different x variants. You are evaluating phi for all that infinite number 

of different x variants, and you are evaluating its truth. So, in each case you will get a 

zero or a one, but this set and then what I am saying is. 

So, this universally quantified statement is true if the product is one, right, once you have 

got zeros and ones this product. So, this product is not going to be a product over an 

infinite set. It is going to be a product over a finite set; in fact it cannot have more than 

two elements, right. 
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So, we have already defined finite products and finite sums here, right. So, your 

universal and existential quantifiers essentially are just products and sums over 

essentially at one element or a two element set, right. It cannot be more than that. Of 

course, the important thing is that these sets are not empty. They have at least one 

element because there is at least one valuation v if A is nonempty. It is necessary to go 

back to this notion of a structure. Yeah this structure is a nonempty set. This domain has 

to be nonempty; that is important. 

If you allow the possibility of an empty domain, then actually except for your existential 

statement all universal statements should be true, right. So, the domain has to be 

nonempty and what we are saying is that empty domains are not interesting. The only 

interesting domains are nonempty, and then once your domain is nonempty, it implies 

that this set is nonempty. It will have at least one element especially for the valuation v 

itself. By the way the notion of variant is such that every valuation is an x variant of 

itself for any variable x, right, because all we are saying is that for every variable other 

than x, the two valuations gives the same value. 

We are not denying the fact denying the possibility that for x also they might have the 

same value in which case they have the same valuation. So, every valuation is an x 

variant of itself for any variable x. So, this set t phi of v by the way this has to be v prime 

here in the subscript; here also it has to be v prime. And for every variant v prime of v, 



this set is nonempty. It will have at least one; if your domain is nonempty it will have 

this will be nonempty also, but because this is only truth values it cannot have more than 

two elements. 
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So, the empty subset is out. So, either it is just a set containing zero or a set containing 

one or a set containing both zero and one; that is it. And in the case of the universal 

quantifier the product of the set containing zero and one will give you zero anyway. So, 

which essentially means that it is not universally true, and for the existential quantifier 

this sum will give you one only if one belongs to this set, right. So, what we have done is 

we have actually given a finite tree definition of this semantics in certain set because this 

set that we are considering is going be finite. So, this finite products and. 

So, we are not we are not violating the finite treeness of the definitions of sigma phi; that 

is what I am trying to say. So, the truth value is not evaluated under a valuation instead 

of a truth assignment. A valuation defines a truth assignment to a parameterized 

proposition depending upon the values of the parameters. And this set is nonempty since 

our domain is nonempty and every valuation is a variant of itself. So, the number of 

variants of a valuation equals cardinality of the set for any variable, and this set cannot 

have more than two elements, right. 

So, we have given completely finite tree schematics, though actually in principle we are 

essentially looking at finite tree descriptions of possibly infinite structures, yeah. So, if 



you are looking at properties of integers or properties of reals, then they are essentially 

infinite structures. And when you make inverse the statements about them, we are 

essentially trying to give a finite tree description for essentially infinite number of 

properties, yeah. So, that is the schematics. 

And in a certain sense it is intuitively an obvious schematics, and of course, we can take 

the propositional by including the propositional connectives and their schematics from 

this table we essentially get full semantics for the full language, right, but I will not write 

that down here. So, the other thing we should realize is that this notion of x variants is 

somewhat closely related to the notion of substitutions, yeah. 
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So, there is a particular. So, let us look at substitutions. I will not go into great detail; 

substitution theta is a function from the variables to terms. So, we have this set of terms t 

sigma union v, right. So, look at this notion of evaluating terms and look at this notion of 

substitution. When you apply theta to some term I mean just to some term which might 

be some f of let us say some t 1 to t 2, then you are doing a replacement of the variables 

in t 1 and t 2 by some terms. So, let us assume that the variable of t 1 and t 2 are the 

union, let us say there are just two variables x 1 and x 2. And let us assume that theta of x 

1 is some new term u 1 and theta of x 2 is some new term u 2. 

So, what we are saying is that. So, you take the substitution theta and essentially this will 

give you a syntactically a term f of some other let us say g of u 1 and u 2 and may be a 



some h of u 1 and u 2, right. You look at valuations; valuations of functions from v to 

essentially the domain. There is some connection between valuations and substitutions. 

So, the effect of a substitution; so, under a valuation v, so if you evaluate this theta of f t 

1, t 2 then under some valuation v then the effect of the substitution theta can be captured 

by another valuation v prime such that if you evaluate v f of g u 1, u 2 h u 1, u 2 under 

this valuation v prime, then these two values are equal, right. 

So, there is some connection between substitutions and valuations. Notice that valuations 

are in the semantic domain, substitutions are in the syntactic domain, right. So, you take 

any substitution, its meaning can be expressed in terms of a higher order function on 

valuations, purely schematically. So, there is function on. So, corresponding to each theta 

there exist a function h from this set of all possible substitutions theta to the set of all 

possible substitutions theta such that h of theta under v is equal to some theta prime 

under v prime, yeah. So, this is the connection that we need to establish between purely 

syntactic substitutions and their schematic counterparts namely valuations. 

So, each substitution can be thought of as a function which actually transforms 

valuations from one to another, right. So, vowel formula is this and we will prove some 

lemma before we proceed ahead, yeah. So, this is a concept that we need to formulize, 

and this will be useful for a full description. Then if you can do this if you can specify 

this function h, then you have essentially completely captured these schematic notions of 

valuations in terms of the syntactic notion of substitution and that two can mutually 

interact, yeah. So, we will look at this in the next lecture, yeah. We will stop here today. 


