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Proof, Theory: Hilbert-Style 
 

So, will do Hilbert style will do a Hilbert style proof system in some more detail. There is an 

important theorem that we have to prove before we can do that. But, we will also look at other 

thing about Formal Theories.  

(Refer Slide Time: 00:47) 

 

So, let us fist go to that so a formal theory basically consists of some language it is a Formal 

Language. And, a collection of axioms which are subsets of that language which is a subset of 

the language. Or of course in if you have an infinite subset of axioms for the theory then, you 

might want to think of them as axiom schemas which so that, they are finitely expressible and a 

set of inference rules.  
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So, that is so this is what so usually as I said this formal language is inductively defined. And, 

therefore membership in the language for any string is decidable. And, similarly the axioms 

should all be a decidable subset they could be infinite but it should be a decidable subset.  
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And, then a Inference rules are essentially written in this form essentially we look at. So, 

inference can often be represent infinite relations in which this one thing one statement is direct 



consequence of some one or more other statements. And, since it has to be a decidable relation 

even if it is infinite what we expect is that there will be some pattern matching in substitution 

way of expressing this infinite rule this infinitary relation.  

So, you can think of these X so in a rule of the form X1 to Xm is Y. You can think of these X1to 

Xm and Y as shapes or skeletal shapes of the formulae. Which, have to follow certain structure 

and the structure is defined by the syntax of a language. So, there are some basic theorems which 

which might be called meta theorems about theories in general. One is and of course remember 

that formal theories of pure syntax. So, the question of how useful or applicable or consistent this 

theories are really depends on connecting up connecting them up with semantics. But that, will 

worry about that later. So, now we will just look at what is known as proof theory.  
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So, in general now Formal Theory we expect that theory is monotonic on the assumptions on the 

set of assumptions. So, if gamma is a subset of delta is a set of assumptions then, if whatever 

gamma can prove is also provable from delta. Because I need to use only whatever assumptions 

there in gamma and they are all there in delta. So, this compactness so this is an so this is not 

really a compactness theorem. But, because of its connection with the compactness theorem that 

we have already proved I am calling it compactness. But, the main point about this property is 

that when we talk about of proof or provability we are talking about provability in a finitary sets. 



So, you cannot I mean there are only the proof of any statement psi from a possibly infinite set of 

assumptions delta. If there exist a proof it has to exist from a finite set of subset of that set of 

assumptions.  

So, even if delta is infinite when we talk about our proof we say that it should be there should be 

a finite subset of assumptions from, which the proof is obtained. And, then substitutivity of 

course is just that this is a standard method of splitting of a theory into lemma’s and theorems. 

So, if I have a set of assumptions delta from which I can prove some statement psi. And, each of 

those assumptions can be prove from a different set of assumptions gamma. Then, from gamma i 

can prove psi that is. So, psi is provable from gamma essentially because each of the assumptions 

in gamma is also provable from this each of the assumptions in delta is also provable. And, 

therefore I can split up my proofs into several such theorems or lemma’s and so on so forth 

which is how formal theories and normally organized. Which is how normal mathematical 

theories are also organized we have lemma’s theorems corollaries. They are all the same things it 

is just that in terms of provability they all mean the same thing on the name lemma or theorem or 

corollary just refers to certain value judgments firstly about the importance of the results. So, 

kenoics lemma probably kenoic did not think it was too important so he called it a lemma. But, 

the rest of the worlds seems to think it is very important. And, Tukey’s lemma similarly seems to 

be important enough to be called a theorem. But, a corollary is of course something that directly 

follow from theorems but there also there also theorems in that sense.  

So, there is only one ocean of a formal theorem though there are many different notions based on 

value judgments of whether something is a lemma or a fact. So I have a hierarchy fact which 

means it is completely trivially trivial to prove. A, lemma is something that is usually used to 

prove a theorem. And, a corollary is something that directly follows from a theorem. So, that is 

those are the kinds of value judgments we make while organizing a theory. But, in a in a formal 

sense all of them are the same notions. And, they actually allow us to organize formal theories 

and structure them in a certain way.  
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So, will do An Example Proof we also looked at we also looked at this Hilbert style proof system 

where we have this axiom schemas S K and N. And, this rule of inference called modus ponens.  
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So, here is a simple theorem this is essentially the reflexivity if the conditional. So, you want to 

prove phi arrow phi from an empty set of assumptions. So, here this gamma is an empty set and 

you have to going to prove phi arrow phi. So, phi arrow phi then is a theorem if you can find a 



proof with. Then normal way we write proofs in mathematics and we should be writing it that 

way is that every step is somehow justified. So, well so you will find that this, Hilbert style proof 

systems initially are not very easy to understand. So, here this justification is another of those 

secular things that I use. Which, are not mostly used in most logic books I directly use the notion 

of substitutions that we are all familiar with in pattern matching and programming and so on and 

so forth.  

And, I use substitutions to as just justification so that it is easy to specify how we got this step up 

otherwise how did we this steps. So, this step essentially comes from the axiom schema K and 

you are essentially looking for patterns to substitute for these variables X and Y. So, this so this 

step essentially says in the axiom schema K if I replace X by phi and replace Y by phi arrow phi 

then, I get this step. So, you can think of these axiom schemas and rules of inference as 

essentially like, Christmas tree templates. You know you take Christmas trees they have a lot of 

hooks on them. And, which the gifts are usually hung but we can go for the we can hang other 

Christmas trees on them for example. So, our formulae’s our formulas of that kind we can we 

can hang. So, these patterns provide that structural templates on which larger trees can be built 

up from smaller trees by hanging those trees on the hooks.  
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So, the next step I mean so this kind of proof is going to be completely non-obvious and its going 

to leave you quite bit huddled but, will go through with it and will get used to it. The, next step is 

this horribly complicated step which is actually justified by the axiom schema S. So, if you lo at 

the axiom schema S besides its normal connection with the S combinatory in lambda calculus 

combinatory logic it also expresses. Basically, the fact that the conditional distributes over other 

conditionals. So, this X arrow Y arrow X is essentially implies X arrow Y arrow X arrow Z. So, 

the conditional distributes over the conditional it is a very interesting and a powerful way of 

looking at the conditional. And, this step is formed by replacing by replacing phi for X phi arrow 

phi for a Y and phi for Z. So, you get this phi arrow phi arrow. 
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So, and then of course then what I can do is I can notice that this one step 1 and step 2 are 

essentially too instances of the hypothesis for the modus ponens rule. So, which means I can 

apply the modus ponens rule. So, the modus so here I have taken a short cut. So, basically you if 

you have a if you have two formulae having this skeletal structure this pattern X arrow Y and X 

then, I can essentially infer Y. So, this is what the modus ponens rule does and from this formula 

is essentially of the form X arrow Y. Where, from here to here is X and from here to here is Y. 

And, this pattern as an abstract syntax-tree is exactly the same as this pattern. And, therefore the 

modus ponens rule can be applied and you will get this pattern as a result and that is what we had 

given. 
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Of course then, but then from the K rule by replacing phi for X and phi for Y I, do get this phi 

arrow phi arrow phi.  
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And, I can apply modus ponens on these two steps 3 and 4 to obtain phi arrow phi. So, 

essentially I have proved the reflexive so the reflexivity of the conditional has been proven by 

with no assumptions by resorting to the axioms schemas and the rules of interest. And, this is 



how normally you can think of mathematics as being presented if it is presented formally. In fact 

when I was in school and we were taught Euclidian geometry we had to actually write it in this 

fashion you know. We, have to write each step and give a justification for each step sometimes a 

justification would just been there as an assumption other ways sometimes the justification 

would be that where. So, that it is some previous theorem or some previous definition or some 

such thing. But, they had to be a number of steps each numbered and each of them have to be 

justified and that is. So, we did not write in free flowing English we actually wrote in a two 

column format always all the proofs in geometry.  

So that trends seems, to gone off now but that provides an important structure to the fact that 

each step does have a logical justification. But, of course as computer scientist this is lousy, 

actually the proof is not such a sequence. A, proof is actually a tree in facts it is what I would call 

an upside down tree. So, what we are going to do say is. So, essentially this proof what we refer 

to as a proof tree there is a certain dependency you apply a rule of inference on some previously 

obtained statements by doing a pattern matching. So, now this dependence can be expressed as 

essentially a directed edge. And, if your proof was indeed non-circular what you would get is a 

directed a cyclic graph or a tree. If, it say directed a cyclic the only difference between directed a 

cyclic graph and a directed tree is that some nodes in a directed a cyclic graph can have in degree 

more than 1. But, then what you do is if you replicate these nodes so that their in degree is 1 then 

you can actually get a tree. So, that is by replication you will actually by appropriately 

replicating this, such nodes. So, you will get you will get a tree so what we what we will look at 

are we will look at proofs as trees.  
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So, essentially so each node is a formula in this proof tree and the leaves are either axioms or in 

case there were there was a non-empty set of assumptions. There could be one of the there could 

be drawn from the assumptions or there could be for example instances of axiom schemas. Each 

internal node is an application of a rule of inference on some target nodes by pattern matching 

and substitution. And, the final the root node of this proof tree is the formula that must be 

proved. And, of course standard things for book keeping and so on and so forth is that you have 

to provide justification sometimes as you can see even in a short proof like this justifications can 

be pretty complicated. If, there were if these justifications were not there you would be quite 

possible to see all these phi’s hanging around in strange ways bracketed in strange ways. And, 

you would know how they were obtained so, you need justification. So, that will be provided by 

these so that is also something that be provided by a label let us say. So, a our typical proof will 

look like this.  
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So, the same proof so these are the steps 1and 2 and this step 3 which yields this formula is 

essentially is a is the line segment extends right up to all the hypothesis of the rule that are that 

are applicable. And, this below the line segment I get the conclusion this is a separate leave node. 

Which, was actually obtained as an instance of the axiom schema K. And, this line segment 5 

which derives phi arrow phi. Essentially, spans these two steps from which the modus ponens 

rule was used. So, we will look at proofs essentially in this fashion.  
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So, a Formal Proof as far as we are concerned of a formula phi is a tree is a proof tree rooted at 

the formula phi. Such that the leaves are axioms or instances of axioms each non-leaf node is a 

direct consequence one or more nodes at the well the succeeding level. I mean the way we 

defined trees was that the leaf nodes have a level greater than the root node right. So, in this case 

we are turning the tree upside down but still retaining the same notion of dependence. And, the 

directed edge essentially talks about is the dependence of the conclusion from the hypothesis. 

And, we would say that our formula phi is formally provable from gamma in the proof system 

this if, there exists of formal proof of phi in the system H naught. If, gamma is empty then we 

say that phi is a formal theorem of the system. So, this H naught is since we will be studying 

several different proof systems. This H naught is for the Hilbert style proof system whose axioms 

we are K S N and mp.  
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And, we will study other proof systems also. Now, we come to an important so will come to an 

important thing about. So, the notion of Provability Formal provability is just that I mean if, phi 

is an axiom or instance of an axiom schema. Then, if then phi is formal theorem if, phi is 

provable or is psi is provable. Then, all leaf nodes in any proof tree of psi or either axioms or 

instances of axioms schemas with they could not applications of rules unless there were some 

succeeding nodes preceding it. And, if psi and axiom or an instance of an axiom schema. Then, it 

does not matter what assumptions you make psi is still provable from that assumptions except 



that you are not going to use any of those assumptions probably. And, if I have an assumption if 

I have a non-empty set gamma and I have an assumption phi inside gamma I will claim that phi 

is formally provable from gamma. I mean those is this is just sort of from the assumptions 

gamma I can prove I mean this is sort of trivial statement.  
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So, next we come to this important theorem called The Deduction Theorem. And, this actually 

epitomizes most of the way we go about proving theorems in mathematic. So, the deduction 

theorem so the notation most logicians do not like all these set union and set brackets and so on 

and so forth. So, if you want to add to some assumptions we just put a comma and add those 

assumptions I mean. So, this is so gamma comma of phi proof psi is just mean this gamma union 

phi proof psi. So, the Deduction Theorem essentially says that, if I have that if there is a 

conditional statement of the form phi arrow psi that is provable from a set of assumptions 

gamma. If and only if I after adding phi to the assumptions the new set gamma union phi can 

prove psi alone.  

This is exactly what happens if you see the most of the direct theorems that we prove in 

mathematics you given a set of hypothesis and, then you have a conditional conclusion. So your 

first step in any direct proof is to assume all the hypothesis and also assume the left side of the 

condition. And your last statement usually is the right side of the conditional and effectively you 



are using the deduction theorem to justify it. So, you are proving a different theorem. So, you are 

you had to prove this gamma proves phi arrow psi but what you are actually proving is gamma 

comma phi prove psi right in any direct proofs. Now, the proof of this is not easy so let us go 

about it in some detail. So, those of you are doing other things besides logic I think should 

wakeup now.  
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So, this is and if and only if, theorem it is a characterization theorem. So, which means that well 

there are parts to it one thing to do. Let us go through this parts I have tried to split it up into 

claims so, that the proof is easier but let us see how it goes. So what I am going to assume is that 

by putting in phi including phi in the assumptions. I, can prove psi given that assumptions. So, if 

I assume that psi is provable from gamma comma phi that means there exist a proof tree possibly 

consisting of m different nodes rooted at psi. Let these m different nodes be psi1 to psi m. By the 

way there is no there is no proof tree which is empty if you are concluding something. Then 

there is at least a root which is also the leaf. So, now what will prove is will prove this much 

stronger claim.  

So, we are suppose to prove that gamma from gamma you can prove phi arrow psi m but will 

prove gamma proves phi arrow psi i for all i. So, that is a so if you can prove this claim then 

essentially we have we have proved the implication in the theorem. So, will do this by induction 



this induction this is because of this upside down proof tree. So, the upside down proof tree and 

because of our definition of tree and levels of a tree the root of the tree has a level 0. The leaves 

of the tree have the levels of much some positive integer greater than the root of the tree. So, 

which means that but, our inference actually starts from the leaves and goes down to the root. So, 

this induction is essentially because of that so the first the very first step I am assuming is going 

to assuming is going to be a leaf node. So, psi1 is a leaf node if so then essentially each of these, 

psi i is has some level which is essentially given by the level of psi1 minus its level.  

So, I do this induction so this is my measure of induction precisely because of the fact that I am 

using an upset of an proof tree if I had actually turn the tree upwards to the right way. Then, it 

would have been any induction on level of psi i. So, this should have been level of psi1 minus 

level of psi i equal 0. That is the basis of induction that means we are looking at a leaf node. So, 

think of it right the basis is that you are looking at a leaf node. If, it is a leaf node then clearly it 

is not obtain by application of any rule of inference. So, it is either an axiom or an assumption or 

an instance of an axiom schema. In the case of our Hilbert style proof system there are no axioms 

there are only 3 axiom schemas. So, but of course all each instances each instance of each of 

those axiom schemas is also an axiom that’s there are no separate axioms.  

So, then we have three cases to consider. One is that this psi i belongs to gamma or it is the same 

as phi or third that it is an axiom. So, we can we can club we can separated the case when psi i is 

phi from the other two cases. If psi i is phi then this reflexivity theorem that we proved already 

shows phi arrow phi i means it is always it always holds. So, there is there is really nothing to be 

show. So, the only case so the only interesting part of this case is when psi i is either an 

assumption for an axiom or that is or an instance of an axiom schema. So, that means so 

corresponding to each psi i there is a sub-tree of the original proof tree. Which, I will call Ti so 

this Ti is rooted at psi i.  
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Now, what I will do is, so this is this is how I am going to represent this Ti. Now I am going to 

construct another proof tree Ti prime from using this proof tree Ti. So, this whole thing is the 

proof tree Ti. And let us assume it is some step higher or some such thing or i prime if you like. 

And, then what I do is I create a new leaf node essentially by appealing to the axiom schema K. 

So, this leaf node with this so this trivially follows axiom schema K psi i arrow phi arrow psi i it 

exactly matches the patterns given in defined in K. So, this must be true but now from this two 

steps I can infer phi arrow psi i by modus ponens. So, now let us assume the induction 

hypothesis that we have done this all for some up to some l or for all measures below that level l. 

Let us say and that we have got we have got to prove for some psi l we have to prove that phi 

arrow psi l is provable from gamma. So, this psi l is a non-leaf node it is neither.  

So, therefore it cannot be an axiom or a premise or a, or an instance of an axiom schema there is 

only one rule of inference in the Hilbert system. And, so therefore that psi l that step psi l should 

have been obtain by an application of this rule. If, it was obtained by an application of this rule 

modus ponens then it must have, then the only way you could have concluded psi l is if therefore 

some target steps i and j. Which, enable to do a pattern matching in substitution according to the 

rule mp. So, there are some psi i and psi j such that they actually without loss of generality I am 

just assuming that psi j is of the form psi i arrow psi l. Otherwise you could not have concluded 

psi l using modus ponens.  



So, you concluded from these two nodes i and j if, you concluded psi l then, one of the nodes let 

us say psi i was just some formula of psi i. And, the other node psi j was of the form psi i arrow 

psi l only then you could have applied this rule of inference and concluded psi l. So, now but 

what we have to prove is gamma prove and this is in the tree gamma comma phi proves psi l. So, 

we are looking at we have we started with the assumption that gamma comma phi proves psi. 

And, we have gamma comma phi proves psi i all of each for each i there sub-trees of this tree. 

So, this is what we are going to assume so we are going to assume that psi j is of the form psi i 

arrow psi l in that proof tree.  
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And, since i and j belong to some target levels less than this level or higher than this level l. So, 

therefore by induction hypothesis they do exist proof trees Ti prime and Tj prime. Which, proof 

from gamma which proof phi arrow psi i and phi arrow psi j respectively. These are separate 

proof trees because, these are different proofs with a different some assumptions. So, now what 

this means is now each of these proof trees Ti prime and Tj prime let us assume they have i 

prime nodes and j prime nodes respectively. So, Ti prime is rooted at i prime rooted phi arrow 

psi i and Tj prime is rooted at phi arrow psi j. But, psi j of course is psi arrow psi l so Tj prime is 

rooted at phi arrow psi arrow psi l. Now, what I am going to do is I am going to form a new 

proof tree T prime l from the proof from the two proof trees T prime i and T prime j.  



So, this represents T prime j so now I am assuming that step numbers have to be different in each 

case. So, now I am assuming that this proof tree Ti prime has i prime nodes and this proof tree 

has j prime nodes. And, if I am going to combine them I have to make step number unique and 

so on and so forth. There is a basic there is at basic book keeping which has to be done. So, let us 

assume that this tree Tj prime is rooted at phi arrow psi i psi l. And, there is this tree Ti prime 

rooted at phi arrow psi i. Now, I am going to take my j plus j prime plus 1th step to be a leaf 

node which is an instance of the axiom schema S.  

So, look at this j prime plus 1 it is an instance of the axiom schema S. Because, phi arrow psi i 

arrow psi l can arrow this arrow distributes over this arrow. So, you get phi arrow psi i arrow phi 

arrow psi l these two steps j prime and j prime plus 1 are instances of the hypothesis of modus 

ponens. And, so I can get the step j prime plus 2 by an application of modus ponens which will 

essentially give me phi arrow psi i arrow phi arrow psi psi l. The tree Ti prime is already rooted 

at phi arrow psi i. So, the steps 1 to i prime i rename them i renumber them as j prime plus i 

prime plus 2 to j prime plus j prime plus 3 to j prime plus i prime plus 2and I have this root here. 

And, these two steps essentially are instances of the modus ponens rule can be applied on these 

two to yield phi arrow psi, Is there anybody who followed it is fine. So, this proof tree is my 

proof tree T prime l. And, that proofs that from gamma it proves phi arrow psi l and let so the 

induction step is over and, therefore the first part of the theorem is over.  
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So, the second part is the converse and that is much simpler actually. So, here of course we 

Assume that we have proofs of phi arrow psi. So, let T be this formal tree may be consisting of m 

nodes for some m greater than 0 then, by monotonicity.  
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So that, is there are this we had this three properties which essentially said if you keep adding 

extra assumptions. The previously proven conclusions still continue to hold the there is a 

question of supposing my extra assumption was a negation of some previous conclusion, Does 

that previous conclusion still hold? When that is valid and legitimate question But, the answer to 

that is yes it holds it, still continues to hold. So, we will define provable inconsistency in terms of 

that. So, in fact what we will do is we will define that a, set of assumptions is inconsistent if and 

only if every formula and the language can be proven from that.  

So, in that sense it still consistent with monotonicity. So, by this monotonicity theorem I can add 

this extra assumption phi and i still have my conclusion phi arrow psi. So, the proof tree does not 

change so the original proof tree for gamma proofs phi arrow psi continues to hold also for 

gamma comma phi proves phi arrow psi. But, what we can do is we can add this so this proof 

tree has m nodes you added in extra assumption you can also add an extra leaf node.  

So, I take this original proof tree T rooted at phi arrow psi add this extra assumption phi and i get 

a conclusion psi by a simple application of modus ponens. So, this is actually a very powerful 



theorem. In fact without in any Hilbert’s style proof system without first proving this theorem it 

is almost impossible to proceed further. Because, what it does is it greatly simplifies the proofs 

of several other kinds of theorems. So, though almost but notice that I had to use reflexivity 

somewhere I had to use reflexivity somewhere. So, this proof was absolutely essential and it had 

to be done without the use of deduction theorem. If, you look at the deduction theorem it is 

essentially about conditionals whereas reflexivity is also about conditional.  

And from the deduction theorem it actually, if I dint require to use reflexivity in the deduction 

theorem. And I had that deduction theorems stand alone then I could have prove reflexivity 

trivially by saying phi proves phi i mean that is it. But, unfortunately I did require reflexivity and 

therefore it is necessary to do that proof before actually proving the deduction theorem. But, 

once you have the deduction theorem lots of things become much easier. So, one of the so let us 

take so reflexivity is one aspect. Let us look at something else so one other possibility is 

transitivity.  
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So, you can look at this so essentially phi arrow psi, comma psi arrow Kai proves phi arrow Kai. 

So, this is essentially transitive of the conditional. And, if it had been written as a theorem as a 

formal theorem then what one would have done, is one would not have bother to write these 



commas. Instead actually one would have written it like this. So, if I had to write it as a theorem 

as a formal theorem this is how I would have written it, is it clear or should I.  

So, as a formal theorem what I would have written is this phi arrow psi, arrow psi arrow Kai, 

arrow phi arrow is this bracket no. This is not so, I would have write it as a formal theorem I 

would have written it as phi arrow psi arrow phi arrow psi arrow Kai arrow phi arrow chi this 

would have been the formal theorem. So, supposing you have to prove this here. Now, it is 

actually very simple this whole theorem can be proven write it I prove.So, this is a formal 

theorem by the deduction theorem if and only iff from the assumption phi arrow psi I can prove 

psi arrow Kai arrow phi arrow Kai. And, this holds if and only iff phi arrow psi comma psi arrow 

Kia proves phi arrow Kai. So, in fact so it suffices to prove this by the deduction theorem. Now, 

how I will prove this?  

Student: deduction phi arrow phi (Refer Time: 47:22) 

That is what we are going to use. So, can somebody tell me, How to proceed with this using phi?  

Student:  (Refer Time: 47:36) 
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So, we are going to you are going to assume phi. So, if and only iff phi arrow psi, phi arrow psi, 

psi arrow Kai comma phi Kia that is all. So, if you prove this it is actually sufficient and how do 

we go about proving this we just we start with this assumptions.  
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And, essentially from so you have you have this you have one leaf node this require some 

complicated manner calculation. Which, I have this as a leaf node I have this is another leaf node 

from which I can infer psi. And, then I have this as a leaf node and I already have this from 

which I can infer Kai and, that is a three step proof. So this, the deduction theorem will 

considerably simplify a large number of proofs. There is also a connection that this deduction 

theorem gives you. So, let us take this let us take all this together so what we are saying now is 

that we have what are known as direct conditional proofs in which certain assumptions can be 

made. So, what we are essentially going to do is, we are going to look at this deduction theorem. 

So, we are going to so assume so this, much assume you got this. These are all you can think of 

these assumptions.   
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So, these are assumptions from gamma. So, our gamma consisted of this, something else was this 

something else psi arrow Kai also no psi arrow chi phi. Now, these are the assumptions we used. 

So, from these assumptions you prove Kai and essentially what you are going to do is so you 

have a proof like this, from these assumptions. And, then essentially the deduction theorem 

allows you to discharge these assumptions. So, if you look at this purple stuff here the deduction 

you can actually backwards on this on this step. So I can actually think of this as from here I can 

actually discharge the assumption.  

So I am using at different colored to show that I am discharging in assumption. And, this 

discharge this assumption phi essentially means that I have phi arrow Kai here. And, then I can 

go one step further and discharge this assumption and get psi arrow Kai arrow phi arrow Kai. 

Then, I can go another step further and discharge this assumption to give me essentially phi 

arrow psi arrow psi arrow Kai arrow phi arrow Kai. So what this, the connection with 

programming language is and programs in general is merely this. That, in order to prove this I 

am essentially making some assumptions those assumptions are create new scope for those 

assumptions.   

Student: what is the discharging (Refer Time: 53:17) 



(Refer Slide Time: 53:33) 

 

I tell you what I am looking for a suitable way of presenting it in terms of trees. But, so 

essentially what I am saying here is so this is an inner most scope. Which has these assumptions 

3, 2 and 1 having discharge this as this assumption phi i get an outer scope. Which has these two 

assumptions 2 and 1 in which this assumption it has this two assumptions 2 and 1 and then when 

I discharge this psi arrow Kai I get another scope. Which has essentially the assumption in which 

this is gone and there is only the assumption 1. And, the outer most scope for which I have run 

out of colors is essentially this outer most scope. Which, has no assumptions this connection with 

scope is not I mean is not just incidental or trivial. There, is a scope of the assumption so if you 

look at this, tree you are looking at increasing nesting of scope levels exactly like we see in our 

program. Further this, scope levels now actually what will happen is the next important theorem 

will prove is a proof by contradiction. And, there what assumptions are taken in order to get a 

contradiction become important. And, so therefore the scope of these assumptions becomes 

important.   


