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So, I wanted to start formal theories today. But, since there was some confusion last time about 

maximal consistent sets I thought I will and since there was some errors in the slides. I thought it 

would be best just go through it once and then come to formal theories. So, I will quickly go 

through it so you have so we have the notion of maximally consistent sets. Basically, what we 

are saying is given any satisfiable set of formulae. How many more elements from the language 

of propositional logic can you add? While, keeping it consistent all the time. So, it turns out that 

for you if you can keep on adding any formula as long as you do not add both it and its negation.  
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So, only one of them can be in a consistent set and the proof of that of course realize on the 

semanticsin a proof of contradiction.  
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And, then we define this general notion called a property of finite character. And this is much it 

goes outside it comes from mathematics and it is really because nothing to do with logic. But, it 

is something that can be used in mathematical logic. Because satisfiability or consistency of a set 



of formulae is itself a, property of finite character. And, that we get from the compactness 

theorem a property of sets is called property of finite character. If, for any set S has that property 

p if and only if every finite subset S also has a property p. So, our compactness essentially says 

that S set gamma is consistent if, and only if every finite subset of gamma is also consistent so 

that is a corollary of the compactness theorem. And so, therefore the notion of consistency itself 

is a property consistency of sets of formulae is a property of finite character in the universe of all 

propositional formulae.  
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So, what we had was this so other sort of examples aSi, said. One is given the universe of 

partially ordered sets which of the sets are totally ordered. So, this property of being totally 

ordered is a property of finite character. And basically, within the universe of partially ordered 

sets a certain set is a totally order if, and only if all its subsets are total orders all its finite subsets 

are total orders. However, as I said the property of if you take the universe of totally ordered sets 

the question of, Whether as set is well ordered is not something that the property of finite 

character? So, the well ordering property is not a finite character because of the fact that an 

infinite set may not be well ordered. But, all its finite subsets and infinite total totally ordered 

sets may not be well ordered. But, all its finite subsets may be will ordered because they will 

have a, minimum elements.  



So, by well ordering we just mean that, there should be no infinite descending chain. And, other 

kind of properties of finite character that you can encounter in mathematics. As I, said with 

questions like, tiling of an infinite plane k colorability of an infinite graph. So, k colorability is 

the property of finite character and basically there is a theorem in on the theory of infinite 

graphs. Which says that an infinite graph is k colorable if, and only if all finite sub graphs of it 

are k colorable. So, and similarly there are things about tiling so there is a fairly general purpose 

lemma called chemi’s lemma. Which, allows us to actually extend for properties of finite 

character. A set having a property of finite character to some maximal set still possessing that 

property. So, Tukey’s lemma essentially says that actually Tukey’s lemmais more general it is 

not restricted to denumerably universes. But, since in this course will be mostly restricted to 

denumerable universes. Because we are restricted to languages and languages are always 

denumerable.  
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For any denumerable universe and any property p of finite character of subsets of U any set S 

subset of U. Such that S has the property p can be extended to a maximal set S infinity. Such 

that, S infinity also has a property p where, p is a property of finite character.  
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And essentially I had made some mistakes with induces. But, now I hope that I, have corrected 

all the induces. So, essentially what we are saying is since our universe is going to be is a 

denumerable set we just we can enumerate its elements in some order a1, a2, a3 etcetera. And, 

you we can consider an infinite chain of sets S starting with S naught being equal to the given set 

S. Assume that S has the property p and we can construct Si plus 1 as consisting of Si and ai plus 

1. If, this Si union ai plus 1 has the property p otherwise Si plus 1 is just the same as Si. And, 

therefore with the assumption that Si has a property p by construction. Since, we started off with 

S naught which has a property p all subsequent Si’s will have the property p all subsequent Si’s 

are also finite. So, our infinite set S infinity is just the union of this chain.  
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And, what you can prove is that S infinity has the property p. And since, p is the property of 

finite character it is enough to show that every finite subset of S infinity has this property p. So, 

we assume any finite subset T and because of our enumerations and so on and so forth. This T 

must be contained in some Si. For some I greater than or equal to C think of this just T is our 

finite set it consists of elements aj. Where, j is the index in the naturals take the maximum index 

this finite since T is of finite set there must be a maximum index let us say m. Now, this T must 

be the subset of Sm for example. And since, Sm would satisfy p and p is a property of finite 

character T would also satisfy the property p because, T is a finite subset of Sm. And so, for a 

any arbitrary finite subset of S infinity we, essentially show that T has property p.  

And therefore and since, p is a property of finite character S infinity also has the property. And, 

the fact that S infinity is maximal is very easy. Assume you have some element a, which can be 

added to S infinity so, you have S infinity union a. Now, this so this S infinity union a is an 

infinite set having the property p, p is a property of finite set character. Therefore, every subset 

of S infinity union a also has the property p. Moreover since, this element a occurs Somewhere 

in the enumeration , it must have some index i plus 1 let us say. So, then what it means is that, 

since every subset of S infinity union a has this property p in particular Si union ai plus 1would 

have this property p. But, Si union ai plus 1if, it has this property p is just Si plus 1. And, 



therefore S infinity is the same as S infinity union this a. And therefore, you cannot extend S 

infinity anymore and therefore its maximal.  
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So that, is what we did and what to is lemma essentially is says is that given any and since 

satisfiability is a property of finite character. Essentially any set gamma can be extended or any 

set delta any set gamma can be extended to a maximally consistent. Any consistent set gamma 

can be extended to a maximally consistent set delta such that gamma is a subset of delta. And as 

a corollary it is easy to see that for any formula phi either phi or its negation should be in this 

maximally consistent set.  
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So, Lindenbaum’s Theorem then follows from this fairly trivially. But, I case you want an 

Abnesio proof of Lindenbaum’s Theorem that is also here. Which I have corrected so you should 

be able to lo at it and convinced yourself. That it is you get a gamma infinity which is that 

maximal and consistent all. So then let us actually formally start today’s lecture. So, one of the 

so what we are actually been doing so far. Is really delving into semantics of the of proposition 

logic we have essentially been working with these semantics of proposition logic.  

But if, you look at logic and its evolution it essentially started off to formalize mathematics and, 

branches of mathematics. Where, the notion of a mathematical reality exists only in the abstract. 

So, one of the things that all our methods have done is, like we our tautology checker or truth 

table or automated reduction they are all a tabular methods for example. So, they are all very 

useful for automated reduction. But, they never capture the flavor of the notion of reasoning 

which was what logic was originally made to do. To capture the notion of mathematical 

reasoning in such a way that you know it sort of it captures our own notion of reasoning of in 

mathematics in fairly abstract. And, domains which means that our semantics itself or of the of 

the models that we are interested in the abstract domains. That, we are interested in do not 

actually exists except through some language description. So, when we are talking about, the 

mathematics of a certain domain that domain is only in the abstract. And, it is described by some 



language by our language. In fact usually we are using our natural language to describe all of 

mathematics.  

The point is that we need to be able to reason entirely in that language. And, still capture this 

semantics of that mathematical domain. Without, actually having that mathematical domain 

directly available to us I mean that is what mathematical reasoning is all about.  
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So, the methods that we discuss directly went to the truth table. Which, in that sense that 

mathematical domain was a concrete domain already available to us. And, we all are 

propositional logic did was described just that domain basically. So, all our theorems are 

essentially of that domain which lets say is already available as a concrete domain. But if I were 

to start with a new branch of mathematics on a, totally abstract domain which does not have any 

realization in our so, called reality. Then, I have to describe it in some language, and all the 

statements about it are also in some language.  

And, the actual domain itself is only the structure of it or the models which satisfy it are only 

available in the abstract. And, they are not available in any concrete form and yet our reasoning 

processes is are somehow mathematically consistent. So, we want a mathematically consistent 

theory. So, you take let us say take something like infinite dimension vector spaces or some such 

things the theory of infinite dimensional vector spaces. Then, were will go for a concrete cement 



exist that which the only thing available is your language to describe infinite dimension vector 

spaces. And, all your reasoning has to be occur in that in that same language. You have to ensure 

that your reasoning is sort of consistent there are no circularities in your reasoning. There is a 

presentation which is logical and in some stepwise fashion. So, that there are no contradictions 

also and that is the duty of the formulization of those things is essentially what logics came up 

for. Simply because, even in a even in fairly simple domains like Euclidian geometry the 

problems are circularity and contradictions were there. And, so the necessity of being able to 

make what is what would call a logically consistent presentation was as important as being able 

to provide the intuition for the proofs of thermos. So, that means now there are two different 

things happening here. One is mathematical intuition about, that domain can have fantastic 

flashes of insight. But, the other thing which is not necessarily directly related to the intuition is 

the presentation of that intuition in some logically consistent manner without contradictions 

without circularities and so. So, that presentation is what you expect mathematics to you expect 

logic to achieve. So, logic is all about reasoning about those presentations. And in that, sense 

since what you sine you do not have the abstract mathematical domain directly with you except 

that you describe it in some language.  

So, the only thing you have really is the syntax of that language. So, the actual domain itself is 

described syntactically and what you want in your logic is to be able to do that. And, come out 

with a formal notion of the process of deduction the process of proof. So, the process of proof of 

course is again different from the process of intuiting about the properties. So, if I have an 

intuition about certain properties of that about a, objects in that domain. That does not 

necessarily mean that I can present a consistent proof. And that presentation is a, different ball 

game all together and that presentation is what we are expecting to do through logic. So, we 

expect to present essentially mathematical theories and, formulize the notion of reasoning in a 

consistent fashion through our notion of formal proofs. So, what we are going to do now is so 

what we did so far was essentially the semantics of propositional logic. So, now let us assume 

that we have understood the semantics of propositional logic. And now, what we want to know 

is, How to build theories? And describe them in some in some formal language. So, what we 

want to do is, we want to bring in the notion of a formal theory. And we want to formalize the 

notion of reasoning in that theory. Which is not like the tabular methods the resolution method or 

any such thing.  



But, reasoning the way we do logical deductions. So, there is a process of deduction from certain 

abstract principles like inspired. Let us, say the axioms given by Euclid from Euclidian geometry 

or presentations of any mathematical domain like say group. The presentation of groups is just in 

terms of the 3 axioms of a group. That basically, the semi group axioms identity axiom and 

inverse axiom. So, that so essentially those 3 axioms say that, well whatever everything that 

satisfies these 3 axioms is a group. And therefore whatever, is derivable from those axioms are 

the theory of groups is the theory of groups. And, they will be available and they will be 

applicable to any group that you might chose. And throughout all that you are delving in is you 

do not actually necessarily have a group available in any concrete form. The group is only an 

abstract they are only abstract models of groups available to you. What you have is, only a 

language of presentation and a language of reasoning and, we have to formulize them. So, 

essentially so these so they do not so the methods that we have discussed so far. While, they are 

good for automated deduction do not reflect the process of reasoning that we usually employ. 

And that is the process of reasoning is called deduction. And, deduction enables but of course 

there is there is one thing deduction enables to prove the validity of arguments. So, essentially 

what we are talking about, is validity of arguments again. But without of actually a, semantic 

model completely described in syntax. So, but the deduction enables proof of validity but seldom 

enables proof of their invalidity I mean their invalidity. The invalidity construction is still by 

constructing a model counter example and so, we have to see what to do about that.  
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So, proof so will talk about Proof Systems. So, all mathematical domains essentially have a proof 

system. So, a Proof System for deduction prohibits the use of meaning in drawing conclusions 

firstly. Because, we are talking about it as a language of communication and that is only that is 

the only language we have. Even the model is described in this language or communication even 

if you have a model in our mind it is only describe in the language. And so it is a sentence of that 

language which actually are the preeminent objects are in some sense the only concrete objects. 

There is a similar analogy with programming you know it is possible to say that algorithms 

Tukey’s are abstract objects they do not actually exists. The only concrete objects that exist are 

programs. So, if you look at in the case of mathematical reasoning also we essentially going 

through the similar process. The actual models that we are trying to describe are abstract objects 

so only concrete things that we have now are really the sentences we use to describe those 

abstract objects. So, the analogy between and proof is really like a program.  

So, but that analogy we may or may not have the time to get into but anyway. Let us look at it so 

a proof system essentially relies on a certain language. And it prohibits the use of meaning in 

drawing conclusions it has a number of axioms. So, our description of a mathematical model 

inspired by Euclid is essentially use have a collection of starting axioms. And or axiom schemas 

and a small number of finitely expressible inference rules. So, these inference rules will allow us 

to reason about this abstract mathematical domain. These axioms and these inference rules will 



actually allow us to reason about reason and prove properties about this objects in whatever 

mathematic abstract mathematical domain we might be interested in describing. There is occurs 

another way the is of course a way of looking at it that is that. This whole theory itself is like an 

abstract mathematical domain capable of being describe in a meta language but, that is a 

different matter let us not get into at a moment. So, we want proofs to be non-circular so in fact it 

would be great if proofs are all trees so, at least directed as a click graphs. So, dependencies are 

expressed by a proof but expressed in such of in a cycle free manner.  

So, that is one thing and the other thing the other important thing is even if this is not we want. 

Since, you use a logical language to communicate ideas about objects belonging to some 

possibly abstract mathematical domain. Which may or may not have a concrete existence then, 

what you are saying is at least. Whoever, you are communicating the properties to and the proofs 

too should be able to manually verify then, there is something consistent in your theory. That 

your theory is somewhat consistent that your proofs are actually valid proofs. They actually 

provide valid logical consequences think of it this way. You do not have any concrete 

representation of that of those abstract mathematical logics.  

And, neither the person who you are communicating with neither that person has any concrete 

representation. The only thing that you have available is this language of communication. And 

therefore he should also be convinced then, the properties you express of this domain are 

consistent. And all the properties that you derive of this domain have also been done have been 

derived in some consistent non-circular fashion. So, this will lead us to something known as 

proof theory but at the moment let us look at, formal theories.  
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So, there is another thing about this the in fact you know if this Tukey’s this last point here says 

that each proof can be checked manually or verified by machine implementable algorithms. So, 

this is a requirement which comes actually from the original notion of computation. As, 

essentially machine computation as essentially simulating behavior of a human computer. Of a, 

human computer who does not have intelligence but has all a finite collection of rules at his 

disposable. So, you can think of this human computer as a child of let us say primary school or 

some such thing and doing computation on pieces of papers. So, in fact the original model of 

computation the during machine was actually inspired essentially by this idea of a human 

computer who does not exercise intelligence.  

So, during had a very clear idea of excluding intelligence from it. And, so what he saying so 

therefore proofs can be checked by algorithms. So, there should be even if my machines are not 

intelligent enough to come out with new theorems. And, new proofs at least my the proofs that I 

specify should be mechanically decidable. By this by a machine as to whether, the proofs are 

correct or not whether there is circularity or not whether it is consistent or not. So, the proofs 

should be checkable definitely manually but at even by machine that’s a stronger constrain here. 

Many logic books do not emphasize that but since, we are doing logic for computer science I 

think it is correctly emphasize that. So, the requirements of a proof system that we are looking at 

firstly is that so we are talking about, just a language.  



So, it means completely syntactic there is no notion there is no place of semantics here 

everything has to be syntactically represented and syntactically proven. And because, of the this 

let us look at the third point decidability. The correctness of any application which involves a 

proof if it has to manually checked then, you have to be able to check that your deduction 

process is correct. Each step of your deduction process is correct and that should be machine 

checkable if that has to be machine checkable by an algorithm. And, that algorithm always has to 

terminate. Then what it means is that, essentially even if you use an infinite collection of axioms 

even if you use an infinite collection of rules There has to be an algorithm which can actually.  

So, that has to be a finitary expression of those axioms and those rules. In such a fashion that 

there is a that an algorithm can apply those rules. And, check that your deductions each step of 

your deduction is in fact correct. So, the finitaryness actually comes from the decidability. So, all 

we are saying is we are not saying that you should exclude anything in it any infinite collections 

of objects. All we are saying is that you have to it should be possible to express collections of 

infinitary objects in some finitary fashion. Through the means of this language because, every 

sentence is the of this language that we are going to use only a finite string symbol or in more 

computer science terms it just a finite abstraction syntaxtry. So, each sentence is a finite abstract 

syntaxtry so, it should be finitely expressive. There the only time when you might want to 

actually use the semantics is to justify the soundness or the completeness of your system. Then, 

at that time there is no alternative except two actually be able to create models. And, show that 

you know you are your mathematical theory sort of consistent and maybe you will have a 

complete theory.  
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So, That is when so this is how we are going to look so focus is really on proof systems. And the 

notion of deduction. So, now when you look at proof systems and they are desirable properties 

there are two kinds of desirable properties about proof systems. Which, are not necessarily in 

agreement with each other. One which is inspired by essentially Hilbert axiomatization 

Euclidean geometry. And, actually something that we encounter in all our books and when is 

Minimality that means I, have to be able to expound the entire theory with a minimal number of 

axioms and inference rules. And I mean this comes from the controversy over the parallel 

postulate. Which, raised over several 100 years the question is, Whether the parallel postulate 

can be derived from the other postulates of Euclid? So, in that sense was Euclid’s axiomatization 

of Euclidean geometry minimal or not. So, that was the major problem that, David Hilbert try to 

address. So, he like minimal systems but actually a lot of us we use minimal systems even in 

computer science.  

Because, we use for example as I said this is a specification of groups by 3 axioms is like the 

minimal set of axioms four groups. So, all are presentations all same terms of minimal systems 

so, minimality as it uses. The other thing is Naturalness I, mean is there some is there any 

intuitive way of doing things you know a much more natural way of doing things. And so we 

look at, proof systems of both kinds. So, the first thing to do is to look at minimal proof system 

for propositional logic.  
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So, will define a formal theory a Formal Theory consist of therefore I, mean. So now, we are 

only interested in theories the actual what there meant to capture the actual models of this 

theories we are not interested. We are, just interested in the formal consistency in the 

construction of theories. So, a formal theory consist of a formal language this is, going to be the 

language of description about, possibly abstract object in an abstract mathematical domain a 

collection of axioms.  
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So, this Formal Language of course a so this formal language has An alphabet and grouping 

symbols and so on so forth. And there is a collection X of variables a set of operators essentially 

we are we are going to take an algebraic way of most things. And, grouping symbols like 

brackets and so on if you like. And, what at every point we want things to be machine checkable 

that is important thing. If not machine generatable at least machine checkable machine verifiable. 

So, which means the question of so this language has to be inductively defined I mean you can 

not just create an uncountable set of randomly created sentences. If it has to be machine 

checkable it has to be inductively defined. So, which means the typically what we want a finite 

abstract syntax trees for each sentence in the language.  

And, inductively defined essentially means that we should be able to apply principles like the 

principle structural induction on these abstract syntaxtries in order to come out with properties of 

the sentences of the language. And the question of whether a certain string so the this is of course 

a this is a typical non-computer scientist. We are looking at, the question of you have this 

grouping symbols and so on the question of, Whether certain string belongs to the language is 

should be decidable? There should be an algorithm to decide it. But, essentially what we are 

saying is if, you say that we have to be are language is essentially consist of and this sentence 

each sentence of our language is essentially an abstract syntaxtry induct. Which is inductively 

defined by this language l essentially we are talking about a term algebra. So, you can think of 

this that your formal language is essentially a, term algebra. 

That is a easiest way so then the membership and so on those kind of questions are automatically 

decidable there are simple algorithm to decide. Basically, you have to do tri-traversal and check 

their airities are maintained that is it, there is nothing else to be done.  
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So, membership is decidable that that it is enough to know that membership is decidable axiom. 

So, some subset of this language are going to be taken as the axioms of our theory. So, this again 

has to be decidable subset. And, what do I mean by decidable subset? I mean that having chosen 

collection L prime of L as the axioms. There should be an algorithm which can tell you for any 

given sentence in the language whether it is an axiom or not. So, what it means is from this 

language L you cannot randomly pick sentences and call the axioms. So, there has to be some 

structure to those sentences. So, that an algorithm can work within finite time given an input 

sentence within finite time it can give you a yes or no answer is to the question is this sentence 

an axiom or not so, it has to be a decidable. So, there is a decidable subset of L which is their 

rules which are the axioms. And, then the inference rules there should be of I, mean again our 

decidability condition means that we cannot have an infinite collections of rules. A, rules have to 

be some of have to have the finitary property of expressability. 

So, that there is an algorithm which decides whether I, have applied a rule correctly or not. So, 

each rule is just a decidable relations of membership in this relation is decidable by an algorithm. 

Which can clearly give a yes or no answer has this rule been applied to obtain this sentence psi 

from these sentences phi 1 to phi m. That, question has to have a definite answer by an algorithm 

it has to have a definite yes or no answer. So, there is so this R should be a decidable relation 

consisting of let us say R is an ambary relation for some m greater than or equal to 0.  



So, m could be 0 also which means then, this relation R becomes a unary relation. Which, also 

means that it what is known as an axiom schema see the fourth point here. But it is an axiom 

schema but it still remains decidable everything remains decidable therefore, manually and 

machine verifiable. So, for each such ordered pair belonging to, this relation R phi 1 to phi m are 

called the premises and psi is called a direct consequence of phi 1 to phi m. And, usually because 

of these decidability and other conditions this r therefore could be an infinite relation I mean it 

could have a cardinality. Which is Lm cross L if, L is an infinite language Lm cross L is also an 

infinite language countably infinite. So, R could be an, infinite subset of Lm cross L so which 

means that and if it has to be decidable. Then essentially R would usually be presented in the 

form of pattern. So, these does it look like purple color? This purple color is essentially express 

patterns. These are patterns very much like the patterns you see in a higher order functional 

programming language they are structural patterns about this, sentences. So, we are not talking 

about string matching we are talking about pattern matching.  

So, if I so R is presented in the form of some m patterns X1 to Xm. And, a pattern Y then it’s a 

finitary presentation of a possibly infinite relation. So, the presentation of the rule in this form 

essentially. So, these X1 to Xm these purple variables essentially defined their shapes of 

formulae what kinds of formula structures can you have. And, then you define having define the 

structures you can. Then, replace all the leaves which contain these purple variables by any 

formula in the language to get. But, as long as you replace the same variable by the same formula 

you have to get an element of this relation R. So, we will see that so r inference rules have of so 

one way of finitely of finitely presenting infinite relations is to use pattern matching.  
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So, an Axiomatic theory so these are ingredients of a formal theory. And, essentially we will say 

that a formal theory is axiomatic. If, there exist an algorithm to decide whether a given well-

formed formula is an axiom or not. So, that minimum of these concepts were defined before 

computer science was even thought of and so they expressed peculiarly. So, we made several 

distinctions but, I am not going to make those distinctions. So I am only interested in axiomatic 

theories everything that I am talking about should be decidable. And, we are also an enlighted 

age where pattern matching is something we are all familiar with. We, were done a huge amount 

of pattern matching in our programming. So, it is easy to understand these things in patterns. 
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So, the Syntax and Decidability issues essentially dominate all this though it is not easy to make 

out from traditional logic book that this is what they mean. So, and of course a deduction has to 

be finite. Because any infinite deduction cannot be verified only finite prefixes of it can be 

verified. So, that so the other thing is that these deduction of a formal theory since everything is 

syntactic and pattern matching. These deduction of formal theory actually can be generated by a 

machine everything is syntactic. So, in fact these deductions or what might be called the set of 

formal theorems I, put theorems within quotes for specific reason. Because I will define the 

notion of a formal theorem which will look like different from what we normally understand is a 

theorem. This set of theorems is actually what is known as a recursively enumerable. And, what 

recursively enumerable means is just that there exist an algorithm. Which, not that it will always 

terminate take the they exist an algorithm but, which infinite time will generate the next element  

So it is not really an algorithm in sense that it is not guarantee to terminate but it generates 

theorem. Let us talk about, generation of even sentences in our language of formally in a 

inductively defined language I can think of this language. Also, the sentences of this language 

also as being any enumerated by first enumerating all the leaf nodes in some one node abstract 

syntaxtries then maybe two or three node abstract syntaxtries and so on and so forth. But, if I 

have an infinite number of possible variables then of course it is never going to terminate. Even 

the generation of one node abstract syntax trees is never going to terminate. But, all we are 



saying is that if there is an ordering of those on those variables if there is a total ordering on this 

variables then between any two variables is going to be finite amount of time.  

Which, this algorithm will take to generate the next one. So, that is so for those of you have not 

done theory of computation the notion of recursive enumeration is that even if it is an infinite set 

it is possible to write a program. Which, is guaranteed to spend only a finite amount of time 

between the generation of subsequent elements of elements subsequent elements of the sequence. 

I mean take a simple program let us say for generation of all the primes. So, if you are going to 

generate all the primes. You, are not going to terminate the program you are going to put it in 

some infinite while loop or infinite recursion. But, if your algorithm is correct then the 

generation of the n plus 1th prime takes only a finite amount of time after you generated the nth 

prime. So, the primes therefore can be recursively enumerated in the sense that there is a 

program. Which, infinite time will generate the n’th element of the sequence. And, will not take 

more than a finite time it is guaranteed and given the n’th element it is guaranteed to produce the 

n plus 1th element infinite time. So, that is a notion of recursive enumerability loosely speaking.  

And, essentially what we are saying is that these deductions. Therefore, the so in theory it is 

possible with just with just the notion of machine verifiability to have essentially a non-

deterministic program. Which, uses all this methods to generate theorems of a formal theory. In 

such a fashion that it takes only a finite amount of time to generate. The next theorem see you 

can order the theorems someway you like 1step theorem, 2 step theorems and so on and so forth 

whatever. And, based on some ordering it is possible to generate all the theorems. And, that is so 

the theorems of a theory formal theory are recursively enumerable needless to say if your theory 

is consistent. Then, your theorems should be truths about that mathematical domain. This 

recursive enumerability only gives me and countably infinite collection of truths. The actual 

mathematical theory might have an uncountable number of truths. Take a mathematical theory 

relating to the real’s which is already in an uncountable set. It is possible there are an 

uncountable number of truths which i cannot unravel in just countable amount of time. So, these 

has some issues with formal theories I mean this is these are some of the things that make 

mathematical still a viable profession I, mean we cannot leave it all to the machines.  
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So, the first proof system was actually given by Hilbert and Acroman. And this is a, presentation 

of this Hilbert proof system for propositional logic it is. So, first thing of course is it is minimal 

in several ways. One is the language itself is minimal it has only these two operators. But, we 

know that this two operators are functionally complete they form a functionally complete set 

they are adequate for all of propositional logic. So, all other operators can be defined in terms of 

these two some kinds of abbreviations. So, given that your actual language of description consist 

a only these two operators and the set of atoms the infinite set a of atoms. Then you have these 

three axiom schemas do not ask me, How Hilbert thought of it? To this day I have no clue how 

he came up with this. For there is an interesting way interesting thing to these axioms does 

anybody notice them. So Hilbert came up with these axioms and 100 years after he came up with 

these axioms there is something re-interesting about them. And, can any of you tell me what is 

interesting about them.  

Student: Still do not know how he got? 

We, I still do not know how he got them, I mean Hilbert died without he was too busy publishing 

too many papers in too many different areas and mathematics to tell us how he came up with 

them. But, this is actually it may not just be Hilbert it is called the Hilbert and Acroman proof 

system. But, this side but this, the whole style of coming up with a minimal set of axioms is 



called a, Hilbert style proof system. Do, you see any interesting in this from the standard point of 

20 first century about, these axioms? Does anybody know, Why I have called this axiom S? 

This any can anybody guess, Why I have called this axiom k? Have you done the lambda 

calculus? Have you done the typed lambda calculus?  
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Let us take this lambda term, what is this lambda term? You forgotten your programming 

language also, true or false it is actually true. But, that is only one particular way but there is 

something more fundamental about this term besides being true is called the combinatory K. 

What is the connection between this combinator K and this axiom K you done some. So, this is 

the combinator K and there is also a combinator S. And in fact, What is a connection between 

this S and this and this axiom S? No idea, Have you ever try to find? The take the lambda 

calculus of simple types or even polymorphic types it does not matter. What, is the type of K? It, 

takes x which maybe of type alpha. And, it produces a function lambda yx which is essentially a 

function of this type. Now, What is a connection between this K and this K? The types of this I 

mean. So, there is an isomorphism is actually on the types structure which is like propositional. 

And, only the thing about the lambda calculus by the way if, you must also learned that this K 

and S combinators are sufficient to describe all computable functions. So, every computable 



function can be expressed in terms of these combinators K and S. So, an amazing result the 

interesting is that the types are actually like propositions and the K.  

So, this K and S essentially can describe all positive so, this n is separate let us not talk about 

that. So, the K and S here essentially can give you all propositional tautologies. Which, do not 

have negation occurring in that it, is an amazing isomorphism between these two sets. But, even 

though amazing thing is this rule of inference modus ponens. What, is amazing about this?  
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You take any lambda term you take a lambda term t, which is of type alpha arrow beta. And, you 

apply it to some term u which is of type alpha and what you get is an element of type beta. So, 

you get an u element a new lambda term v which is of type beta. And, this modus ponens exactly 

captures beta reduction. So, there is an amazing I mean it is these things were done 

independently though a, the lambda calculus itself. And, combinatory logic came up of few years 

after Hilbert’s axiomatization. But, the connection is absolutely stunning and the fact that you 

can all types are just propositions is an, quite interesting thing. And, there is an isomorphism 

between this and modus ponens.  

Which, is standard rule of inference if I, have proved that a something imply something else and 

if I am given antecedent then, I conclude the consequent. And, that is also beta reduction the type 

of beta reduction. So, this is all that you require and there is the, I will not go into this and it 



connection with lambda calculus that’s a little complicated. But, let us live with this so that is 

why I called these axioms S and K not many books not many logic books called them S and K. 

They call them a1 a2 I, mean is the ridiculous thing to do. But, and this modus ponens is actually 

beta reduction. So, there is an interesting connection between therefore programming languages 

and logic that is it.  

 


