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So, welcome to lecture six of computational geometry. So, we will continue with our 

example that we started last time on computing the area of union of rectangles, isothetic 

rectangles that is axis parallel rectangles and again the technique that we are using the 

main technique that we are using is the line sweep.  
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You look at this example where the number of overlapping rectangles, this situation of 

course is more complicated than the situation where the rectangles are non-overlapping 

in which case, we simply just add compute the area of individual rectangles and add 

them up. As we had observed last time, we can try to reduce this situation where we are 

overlapping rectangles to the situation where its non-overlapping, we are actually trying 



to compute all the intersections. So, if you can compute all the intersections, then we can 

think about them.  

So, these intersecting rectangles can become the smallest intersecting rectangles which 

do not have any further intersections they become your disjoint set of rectangles and they 

there by again you can compute the total area by just summing up the areas of these 

rectangles. Unfortunately if you try to do that then we will have to compute these 

intersections and there can be lots of intersections namely you know if is this is the case, 

they are close to what n square intersections so, then you chances of a sub quadratic 

algorithm is no longer there right. So, we would ideally like compute this faster than you 

know something like n square times, where that is we do not we want to avoid 

computing this intersections. 

So, what is the basic idea that we started pursuing? So, again if you want to use line 

sweep, and as we start from the left most rectangle and as we sweep across at any point 

of time, we maintain the intersection of the rectangles with this sweep line and if we look 

at this you know delta x. So, this infinitesimal that I am sweeping, whatever is the total 

area that is being swept by this line, we can write this as you know summation of.  

So, y is the total intercept of the rectangles with this vertical line and therefore this 

infinitesimal area the rectangular area would be y times delta x and so, if you sum it of x 

is equal to you know the left most rectangle; let us call it r and r let us call it l and r left 

and right most, then you know it is it is basically the measure of the union of the 

rectangles. 

So, this y that we are saying multiplied by delta x, we can write this only if this y which 

is intercept of the rectangle. So, here in this line that intercept is essentially this plus this. 

So, as we sweep past we do not want this y to change. So, our stopping point so the event 

points we will those where we will be those y x coordinates such that there is no change 

in the intercept and then we can write this equation and thereby we can compute the total 

area.  

So, this actually introduces a problem which is actually you know 1 dimensional in 

nature. It is the total intercept of the rectangles with this vertical line. In other words, so, 

I will just sort of rotate the axis. So, what we are now trying to do is given a set of 



intervals, they are actually they all along the x axis I just spread them apart so that you 

can they are visible. 
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So, I have a set of intervals and I want to compute, I will just change this example little 

bit, create more gaps actually. So, we have this set of intervals, let us call them i 1, i 2, i 3 

etcetera up to some i 7. So, we are given this intervals along x axis of course, in the 

actual problem these intervals around along y axis and we want to compute the sum of 

the union of intervals namely in this particular case, the sum would be where this is 

covered. So, I will just use another color. So, this part is covered and this is let us say 

sum some number you know say 1.5 for something and then this entire thing is covered 

by at least 1 interval and there is this again some gap. Then again we have this and this 

and this. So, if I had actually not drawn this interval separately in the y direction, this is 

what it would have look like and what I am interested in is a sum.  

So, may be this is 1.5 and this is a 3.8 and this is 2.2 you know something like 4 may be 

something like you know  1.9.  So, then I simply add this up these are disjoint intervals 

and whatever is a sum that is what I mean by the sum of the union of the intervals. So, 

when we are talking about computing the area of the rectangles using this plane sweep 

method, we have now actually reduce the dimension to a 1 dimension problem because 

we are only looking at the intercept of the rectangles with the with a line.  



So, now, we can only look at these intervals. These intervals are nothing but you can 

think about them like the projection of the rectangles on the y axis. In this case of course, 

you know I gave turned the coordinates around it is x axis fine. So, once we know this 

and this is essentially is our y you know this 1.5 plus 3.8 plus 2.2 plus 4 plus 4.9; is what 

is y is equal to. And if we sweep by the amount delta x, if we sweep by delta x where y 

does not change, then the total area swept by the horizontal by the vertical line equals 

you know whatever that whatever the sum is y times delta x. That is all I am saying. 

 So, we have now reduce the problem of computing the area of rectangles to one that 

where we want to compute this keep track of this y where y do not change and y only 

changes, y will change or let us say y can change (( )) y can change only when one 

rectangle begins and two rectangle ends. And unlike our segment intersection case, both 

these events are known to us right from the beginning because rectangles are given to us 

we are not trying to compute anything that is related to the intersection of the rectangles.  

We are only looking at the beginning that is the left boundary of the rectangle and the 

right boundary of the rectangle that is all. These are well known to us in advance. So, the 

actual the work or actual algorithm focuses around computing this y. So, how do we keep 

track of y. This is essentially what it comes down to know which is as a just pointed 

before, you know it is a it is set of intervals and what is the sum of the union of the 

intervals. So, how do we keep track of this?  What would be the simplest way of doing it 

and given a set of intervals, given a set of intervals something like this. 
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So, how should you keep track of the sum of these intervals given that two intervals can 

overlap. (( )) Yeah I think someone split that. So, we can use another sweep kind of 

technique which is see when I started drawing these intervals, I was actually drawing it 

in kind of sorted fashion and left to right. I took the left the left most sorry the left most 

end point, do this interval and I shifted my pen and drew the next interval which means 

that the next left most point and I drew it in that order and actually this is also the method 

by which I can actually keep track of the of the sum of the total length covered by these 

intervals. 

So, this could be something. So, as we start sweeping from again if I start sweeping from 

this is the 1 dimensional problem, but you know actually we just start walking along the 

x axis (( )) x axis we can simply start walking. So, as long as we pick the left most 

interval. So, as we go on. So, we keep track of the fact that we picked up some interval. 

And if we first solve what do we do we first solve the end point of the intervals. So, let 

us say we sort the end points of the intervals. So, there are two end points to be sorted 2 

n end points.  I do that and then I start walking from the left most left most interval, the 

left most end point of the interval and as we walk you know I have to keep track of the 

fact the at any given point of time, is there any interval covering that x axis. So, as we 

walk along this x axis. So, I keep walking because this interval has not ended.  



So, we also keep track of use another color as we walk from left to right, we keep track 

of “is there any interval covering a particular x value.” So, as I walk across so, we walk 

across so I can continue because that I have not encountered the right end, but it means 

that there must be some interval covering every bit of this journey, whatever this 

movement from left to right. Now of course, what this segment ends. The movement it 

ends here there is a gap. So, there is nothing that is covering it. So, whatever I have 

covered till now I can make a note of that, maybe it is there is say some 1 point either 2.2 

or something that. So, some where you know I am going to count that I have swept 2.2 

and then at this juncture, there is no interval covering this. 

 So, I have to now jump to the next end point which is here again I start walking great I 

note down this whatever this left end point whatever that x coordinate is. So, again I start 

walking of course, we do not walk continuously, you only walk to the next event point 

which must be the end point of some segment. So, here it happens to be the staring end 

point of another segment great what it means is that. So, as we walk we not only keep 

track of fact that there is an interval covering it, we may also want to keep track of the 

fact that so why I have encountered this, but then there is still another segment covering 

as I walk fast that. So, what should be also keep track off. 

(( )) 

Number of intervals covering any given x coordinate. So that we always keep a count. (( 

)) whenever we whenever we encounter the end point of any interval before we do 

something we encounter an end point. 

See stack is a very you know it is a data structure is only in the last in first out. These 

intervals may not have the last in first out kind of property. In intervals two intervals, let 

it can be any kind of relation. 

(( )) when whenever you encounter given point, if it is a begin of some segment. So, 

what is that you are going to push and pop. If the stack is empty you do not walk I mean. 

No, I am not talking about the stack. I am just talking about counter, a simple counter we 

will do or else changes keep a counter to note how many intervals contain the present x 

coordinate. So, then if a segment ends sorry an interval (( )) word interval sorry and an 

interval ends, decrement count interval begins: increment count. So, this is simple thing 

about count and we must also keep another kind of a global counter where we are going 



to add how much x coordinate, what is the measure of the x coordinate that is being 

covered. So, only when the count reaches 0…  

So, here for instance we have started from this left end point. So, we make a note of this 

x coordinate suppose it is some 3.5. So, we know that the last end point that you started 

with for you know when things actually covered by some interval to wherever this ends, 

the count also becomes 0, the count is 0 at here. So, count equal to 0. So, when the count 

equal to 0, we also note what is the x coordinate of the (( )) 0 may be it is in 6.3 which 

means that we have swept 6.3 minus 3.5 and this must be added to the total measure that 

we have encountered so far. 

Any doubts? This is the most straight forward way that you can prove it right. So, what is 

the overall sort complexity that we are encountering in the process? So, end of the whole 

thing you should give the correct measure of the union of the intervals. 

 (( )) Well order n you know without counting the sorting the sorting cost right. So, if 

things are sorted, then you know its ordering we will not doing anything any work, every 

event point we are just increment or decrement the counter checking that the count is 0, 

if the count is 0 then you know you must do the subtraction and keep it a side, if count is 

not 0 we just continue. So, this is nothing but actually the 1 dimensional version of the 

area problem. Here we are computing the measure of the union of the intervals where we 

are actually computing the actually problem was compute the measure of the area of the 

union of the rectangles. 

So, using the line sweep method, we have you know somehow managed to you know 

reduce the dimension which is actually, let us say made the problem at least more easier 

or more straight forward and then we put these things together that you know. So, we 

know how to actually at any in the original problem, let me go back to the original 

problem. 

In the original problem actually we are sweeping a vertical line, at any x coordinate just 

by the previous approach, we can compute the total intercept of the rectangles with this 

line and then we can keep sweeping till we encounter the next event point which is either 

beginning of the rectangle or the end of the rectangle. And then multiply whatever 

distance we have travelled that multiplied by the total intercept which is constant because 



it cannot change between two event points and then we eventually sum of everything and 

we should get the right area. 

(( )) So, what is being observed that the total complexity should be n square. Why is the 

total complexity n square? So, let me just note what we noted essentially is that, to 

compute y, we solve the 1 dimensional problem i is the sum of the union of intervals. 

Again by you know some kind of, by line sweep method let us say. So, we noted that this 

state’s, you know if we if we if we looking at all these instances as independent problems 

to compute this intercept with the y axis, this could take about order n log n times if you 

sort and then there are 2 n event points for corresponding to the left and right vertical 

boundaries of the n rectangles. 

So, at every event points, if you do it naively or mean in the in the straight forward way 

you just did it. So, that is n log n. At every event point, we may have to update this 

essentially. So, the straight if you just do it naively and then you will get this just thing 

about order n log n times 2 n, that is some of n square will pretty close to n square let us 

say you know n square fine. So, we are unfortunately back to the same complexity if you 

were to actually compute these intersections and treat them as disjoint rectangles, but 

you wanted to avoid all that. 

However note that all this is done assuming that these every time we have to compute, 

we encounter an event point correspond to the beginning of the end of the rectangle, we 

are computing the some of the intervals from scratch. But the reality is that, when we 

encounter the left or the right boundary of a rectangle exactly and let us again assume 

that you know no two left or no two right boundaries are the same vertical line. Then 

actually exactly there is 1 interval that is going to get deleted here.  

So, this rectangle ends. So, this gets deleted or corresponding to here, this rectangle this 

interval corresponding this rectangle gets added. So, at every event point, the change is 

very incremental and trying to you know sort of run this entire 1 dimensional algorithm, 

what I mention is something that hopefully can avoided because you have a lot of 

information you know corresponding to the remaining intervals is just that one interval 

we have to take care either we have to so, either we subtract that one interval or we have 

to add that one interval. 



Now, that may or may not make difference to the intersect, but all that is essentially 

again with you know just 1 interval that we need to somehow handle. So, it is some kind 

of a dynamic situation. It is not fully dynamic, I am saying it is not fully dynamic 

because these intervals are known to us in advance; the rectangles are given to us in 

advance. So, it is not that this 1 dimensional problem, we have just arbitrarily 

introducing some interval like this. But this interval is known to us because it has to be 

either the right boundary of a rectangle or left boundary of the rectangle and it is 

available as the initial input. So, it is not a completely arbitrary interval.  

So, we have fair amount of information available and we should be somehow able to 

exploit that. 

So, (( )) 

 yeah. So, I mean the idea is that. So, what area. So, now, the question is that  if we keep 

track of some of that you know this part of the x axis is covered by this interval and if 

this interval disappears, then we should update something, but it is not such a easy thing 

to do. I will give you a very bad example it is not easy thing to do because we to now 

keep track of the first of all it is a continues information. I cannot keep this information 

for every x coordinate ok. 

But these (( )) we only access those (( )) intersection right. 

 yeah. So, here this x axis this x coordinate is covered by these two intervals. The thing 

that I am trying to point out is that which of these x coordinate  should I keep track of 

because there are infinite number of x coordinates. 

(( )) 

Right. So, the information remains unchanged let us say in this whole thing and what is 

observation here, that it must remain unchanged between two event points two 

consecutive event points. So, we have to deal with. So, now, let me expand this figure. 
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So, if we have lots of intervals, we have to deal with relevant ones are corresponding to 

this end points and so, if I take this to (( )) x axis. So, these event points corresponding to 

end points. So, between any two consecutive event points, the information is fixed. 

You know that these are exactly the two or three or four; whatever segments intervals 

covering that x coordinate or that this intervals, but if you keep track of this information 

also, suppose I am in a situation like this. So, then what means it means I have some 

intervals I have too many intervals, I have 1, 2 all the way up to 2 n intervals. So, for 

each interval I keep track of which segments covered it. 

So, interval 1 is covered by you know segment 1 and segment 2. So, 1 is covered by 

segment 1 and segment 2. 2 is covered by sorry 1 is only covered by segment 1 and sorry 

2 is covered by segment 1 and segment 2. 3 is covered by segment interval 2 or segment 

2. So, this is the kind of information that we had in mind. The bad thing about this, so, 

therefore, you know if  there is something that is need to be updated,  if I delete or add a 

segment, we know exactly you know which of these intervals are going to get effected, 

but then large number of intervals could be effected and not only that, this information its 

self has a bad you know you have a situation like this, suppose what it means is that... 

So, for each interval, there could be a large number of segments covering it which is in 

fact, if you do this will be at least about n square kind of information that you need to 

store. So, if I need to square the square information again I do not have much hope about 



an efficient algorithm. So, although this kind of information can be maintained in this 

way that you know which and these intervals are known to us, we know that which  we 

know the rectangles we know the boundaries and therefore, we know all these intervals 

in advance, these 2 n intervals in advance, but still updating that could be quite expensive 

because a single segment or single interval can cover a lot of them. 

So, if I have to keep it updated whenever encounter the right boundary or the left 

boundary, it could still mean a lot of work and it could be let us say about order n work 

per update where I have given you this kind of an example and therefore, again you are 

back to this n even points each update takes order n time you are back to the order n 

square situation. So, we have to be much more clever about this data structuring part and 

how do we actually update do these updates. So, how do we do these updates? So, for 

that, we will actually make a few observations. So, there these intervals. So, there are 

these intervals; 1 to 2 n. I will try to define a kind of... So, 1 is that, let me number those 

intervals. So, well I have done it here 1, 2, 3 up to 2 n. 

Yeah keep a fresh page. 
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So, I have some kind of intervals 1, 2, 3, 4, 5, 6, 7, 8; suppose I have only eight intervals 

just for an example. I will define a kind of it you know its tree kind of its structure 

associate with these intervals. So, I will treat these eight intervals as leaves of the trees. 

Let us say, I have this leaf is associated with this interval. This leaf represents this 



interval and this leaf represents this interval and so and so forth. Now, what the actual 

intervals are the lengths etcetera, that information I can store, but now you know you still 

be more of a combinatorial representation. So, what the lengths are weather they are 

equal or non-equal, it will not make any difference to the structure of this tree. So, these 

intervals sorry this interval corresponds to this node, and then I will define the parent of 

these two leaf nodes which will be the sum of the intervals that the two children 

represents. 

 So, this one will represent essentially you know the entire interval from here to here. 

This represents only this much; similarly for this things. Now this 1, the parent of these 

two nodes will define and represents this entire interval. So, this one represents the entire 

intervals and of course, there is no the root of the tree you know represents this entire 

tree. 

So, I have a certain number of intervals, just for again for simplicity, we are assuming it 

is a power of 2 that I can define this tree very easily, even if it is not a power of 2, you 

could just either have some empty things you know are you can make it in a almost 

balance that everything all the leafs nodes will be within 1 1 level with each other. Now. 

So, this yeah 

(( )) 

So, that we will come to that. So, right now, these are water called canonical intervals. 

What is a canonical interval? The canonical intervals are exactly those represented by the 

leaf nodes. (( )) not leaf nodes, by any node. So, this is a tree which has how many about 

fifteen nodes, eight plus seven. So, these fifteen nodes represent you know fifteen 

intervals which I am calling canonical intervals namely so, the leaf nodes represents 

these if you call it n the n nodes, the once about the leaf leafs the parents of them 

represent let us say n over 2 and there are again n over 4 and you know etcetera. So, 

essentially this tree structure is able to represent only a linear number of intervals. 

Alright. Any node of the tree corresponds to some interval and the total number of 

representable intervals is in these nodes is only n plus n over 2 plus n over 4. So, some 

order n, let us say 2 n or something. We have still you know fairly restricted and the 

question that came was what about the arbitrary intervals. Suppose I want to represent 

this interval, there is no node in the tree that represents that interval. 



How many intervals can be there? Possible intervals according to this structure? About n 

choosed right. I mean I can choose any two end points among these end points. So, there 

are n choose to possible intervals. These are not arbitrary intervals you know these have 

to whatever intervals we considered must be flush with one of the end points. You know 

I cannot I am not thinking about representing something like this from middle of this and 

middle of that, I am only thinking about representing intervals that span you know two 

such points of this because these points are known to us. If you think about original 

problem, these points are known to us.  

Any interval will span they are not arbitrary intervals, it has to span you know two such 

event points or end points whatever you called them right. So, if you restrict your 

intervals to be those kinds of intervals, then I can choose any two points and that 

represents an intervals and that is basically n choose to. So, we have only order n 

canonical intervals and we need to represent, need to somehow deal with order n square 

intervals. How do you do that? If you could do that, then I clean that our problem, Well I 

mean that that is basically what we are trying to do and have a nice way of representing 

these intervals so that we can do this deletions and insertions of the intervals easily. So, 

let us look at this one interval that I just I pointed out you know this interval alright.  

So, clearly it cannot be represented by one node, but we should be able to some are 

represented by some union of some nodes perhaps. So, what do you think which one 

should be used to store this interval? (( )) Yes that is what I am saying precisely. So, let 

me use another color. So, if I want to represent this interval as you saying that I should 

store it here of this node and which are the nodes. (( )) 

I stood well I have a choice of this and this also. I could I said I could do this, this and 

this. I am done right.  If these are, but these are all elementary intervals essentially those 

are the intervals of the leaf nodes, but then I if use leaf nodes there are too many leaf 

nodes. So, especially if I both leaf nodes or the both two nodes that represent, they are 

used for the storage I might as well substitute them by the parent, then I save something. 

See if both these nodes are required, then I am not going to use that, but would rather use 

other parent. So, I should use this. So, here also I could I have I cannot use this and this. 

So, I can use only this. So, I will store this and then of course, I do not have anything 

else. So, I will store it like this.  



Suppose it well the case this was all to used, then I wouldn’t have used this and I would 

have store the whole thing here. So, if both the children are storing, then I will not use 

them, but I will use the parent. So, therefore, you can see, the storage structure of an 

interval is such that you are not going to store them in two nodes you know which are 

ancestors to each other. 

(( )) 

Yeah. So, you know. So, the answer comes very quickly, then it is a total number of 

nodes where that is required to store any arbitrary intervals is about order log n and so, 

we will have to justify more carefully, but if this is true then it is great because now you 

see that an interval if you can use if it can be stored using only order log n intervals as a 

nodes of this tree, then I have to when I am adding or when I am deleting, I have to at 

most update order log n nodes of this tree and what do I mean by update. So, eventually I 

would like to I have some intervals. I have some intervals not just one interval. I have 

some intervals; may be this interval this interval, this interval etcetera and I want to find 

the total measure of these intervals. I am going to find I am going to store them in some 

nodes.  

I want to compute the result in the root node somehow and that is how I am going 

basically keep track of the total measure of the union of the rectangles and how is this 

done? If there is some interval that is stored here in the root node, this is by the way an 

actually tree, I mean our computer science trees are usually like this, I could have written 

like this is actually growing out of the ground right. So, anyway. So, this is  a real root. 

So, if there is any interval that is stored here that is one of is this is also colored which 

means that this interval, there is some interval corresponding which is stored in this 

node. It means that the measure of the sum must this entire team. 

 You know all the way of this eight whatever it is from left end point to the  right end 

point of course, each of this end points has an coordinate actually. So, whatever it is, that 

entire length would be my measure because there is some something is stored here, if 

there is something stored here right, but it may not be the case. If it is not the case is then 

there nothing stored here then what we do? Then it must be the sum of what is stored 

here and what is stored here because that is disjoint. So, whatever is the total measure 

stored here and the total measure stored here, it will be the sum of that.  



So, if we basically just you know go through this tree and we have to visit every node, 

you can easily find out you know what the total measure is of this union of the union of 

these intervals. So, that will be order n, if you have to compute this, but then you do not 

have to compute the entire thing. We only has to make updates. In our in our context, 

what are we doing we are only either adding an interval or deleting an interval. So, we do 

not have to visit all the nodes to for doing that. We only have to visit those nodes which 

are either added because of this thing or deleted because  this when this gets deleted you 

know this things this storage basically is thrown again. So, then and this is the we are 

dealing it only order log n nodes, we can do this updates in time proportional to order log 

n order log n and the height of the tree. 

(( )) 

Yeah So, I will come to that. I am just giving you a I am just giving you a summary of 

you know I am giving you a feel of why you know all this is good and then we will do 

the precise reasoning. So, if what I am saying is correct, essentially you have an 

algorithm where every update will cause to order log n corresponding to each event point 

and there 2 n event points corresponding to the left and right boundaries of the 

rectangles. So, therefore, the whole thing will work out in log n time, that will be 

absolutely great. So, now, let us take these things one after other.  

Why is it true, why do we claim that there are only order log n order log n nodes that will 

be where n interval can be stored because there can be at least two nodes at each. 

Because if they are (( )) 

Correct. So, that that is a fairly you know accurate reasoning. So, what is being said is 

that, it look at any level of this tree corresponding to any interval because it is a 

continuous interval, you can have at most two nodes that stores some part of the intervals 

some sub interval of that. 

I cannot have the situation where I am storing something here. So, one is that if you if 

you have two consequent things it must move up to this thing. So, and if we cannot have 

the situation where we have something and gaps and something like this because it is a 

continuous interval. 



It cannot have there cannot be a gap because there must be some storage here also, if 

there is a storage here then they should two should combined and move up. So, there can 

be at most two storage nodes corresponded to interval at each level and there are only log 

n levels. So, the at most 2 log n. What you argued is that, there is less than or equal to 2 

log n storage nodes for any interval. So, that is the situation, then y is the update order 

log n. does not immediately imply the update order log n? Not really. See if you think 

about it here is a node when we want to update we have to basically walk along this node 

to the root and update the counts.  

Each node could have one or more intervals as long as it has an interval. It means it 

covers the entire interval corresponding to this canonical interval. If the count is 0, then it 

must be the sum of these two. 

So, whenever we have a new storage node or whenever we are deleting something from 

a node we must actually start walking towards the root updating all the counts. So, if 

there are 2 log n storage nodes, what does it implies. It only implies about log square n 

because for each node, for each node you have log n updates. So, for log n nodes you 

have order log square n updates. 

This would be the nice reason, but actually there is a more structure to it which makes it 

actually an order log n update rather than as a log square n update. It cannot be clear of 

exactly from this example. So, I will give you another example may be from there it will 

become clear. So, this is something that I drew before I came to the class. So, let us look 

at this. 
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 Is it visible or not? So, shall I write or let me draw it in the case because it may be not 

visible in the camera. 

(( )) 

So, I have drawn something corresponding to these intervals 4, 5, 5, 6; this are my 

elementary intervals, 6, 7, 7, 8, 8, 9;  all the way to the 14 ,15 and I have a tree like this 

and you look at this interval 10 comma 13. So, this is I have drawn it in the proper way 

that tree root is at the top. So, if you actually now. So, we argued that there are about 2 

log n’s 2 edge nodes for each intervals. Now we will actually able to argued to something 

about the structure of this, they are not arbitrary log n nodes. So, if you look at this 

interval 10, 13; it kind of spans this. It kind of spans this and how do we actually you 

know if you have given this tree and I have to find out where we should allocate where 

are the allocation nodes, I take this 10, 3 10, 13 interval and look at the... So, this is the 

root node which corresponds to the entire interval from 4 to 15. 

So, 10, 13 you know and we see that actually this 10, 13 correspond to… So, this entire 

interval will lie to the right on the right  sub tree because the left sub tree only goes up to 

the 9. So, for every node, I will actually store a kind of a divider dividing point. Here it is 

9, here it is 6 and so on so forth. Now this entire interval 10, 13 lies to the on the right 

sub tree. So, we actually basically come here.  



So, when we come here and if this for bigger example, it could be that this entire interval 

lies to one side, that could the case. So, for a while may be this entire interval basically 

travels down for a few levels of the tree before it hit some node where some part of it is 

at left some part of it is at right. 

In this case it happens that at this node itself you know which we call this a forking node 

it fork basically. It forks and after it forks you know things are very regular. So, this is… 

So, we have 10, 13 and if you look at it, this is an allocation node and this is an 

allocation node So because it covers 14 12 and 11 12, of course, they have to be get the 

same level. So, the structure actually again if I had a bigger example that would become 

clear, but now I am I just abandon that and just show you  what is basically happening. 
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So, if you have any tree, this interval that we are looking for, that entire interval travels 

for a while together and then it forks and after it forks, you can only have one kind of 

pattern, the worst case pattern or whatever; one kind of pattern is that you will have 

something like… So, there will be some path. 

So, you look at the left path and the right path. So, each interval let me come back here. 

So, you look at the left end point of the interval and the right end point of the interval. 

So, 10 you just locate, you just try to find where 10 lies and you know 10 will take you 

basically like this and 13 will take you something like this well. 



Well. So, these are the actually the two end points will trace this kind of path in this tree. 

So, which side the point falls on. So, after all, we are talking about you know whether the 

points for every node we have a dividing point. So, the point goes left the path goes left. 

Going adjacent to (( )) right in to the. 

13 was. 

(( )) This one. 

(( )). This one 

Yeah you could have (( )) also right 

 yeah. So, actually strictly speaking you know this 13 you know, this is actually an open 

intervals. So, you know the intervals are actually something like I should have be pointed 

out. It is actually something like a to b alright. This is strictly speaking it is like this. So, 

we actually trace we can trace out two paths for the left end point and the right end point 

of the intervals and this will path like this and so, this some path and there is some path 

and you can actually you know this is something I will leave for you to you know 

convince yourself your allocation nodes will be exactly this; the right child of the left 

path and the left child of the right path and because this is the case so, when you actually 

walk up from there, you know this paths actually merge. So, you are not dealing with 

you know order log n distinct paths, but they are basically you know I have a very nice 

patterns. So, I am going to only deal I am only going to visit order log n nodes on my 

way up from each of these nodes. The total number nodes that I visit will be order log n. 

So, total number; maybe I should write it here. 
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So, one observation is that about. So, this structure I should say is about it is called 

interval trees, observation about interval trees. So, whatever I drew corresponding to the 

interval is called interval tree. So, one is each interval is stored in at most 2 log n nodes 

and two: the total number of nodes visited when we walk towards the root from the 

allocated nodes is again less than 2 log n. So, this is what actually makes the update, not 

even log square n, but log n. 

 Now you can put everything together. So, what is. So, let me just summaries before I 

end. So, what we did today was we took this rectangle problem and did the line sweep 

and when we did the line sweep, the problem came down to how do we keep the 

intercepts updated when we sweep between two consecutive event points defined by the 

left and the right boundaries of the rectangles. 

Now, for performing this update of the intercept, we looked at the 1 dimensional problem 

will becomes essentially we given a set of intervals now if I ask add an interval or delete 

an interval, how do we update the measure and for that, we defined this interval trees 

where the elementary intervals are consecutive points. So, leaves correspond to 

elementary intervals and every interval node corresponds to union of its children and that 

is how we defined the tree and if there is.  

So, these the nodes corresponding to the trees correspond to about order n canonical 

intervals known to represents an arbitrary interval, we figured out which are the storage 



nodes for that particular interval and then we observed that there are at most 2 log n 

allocation nodes for each interval and moreover not only that, these allocation nodes for 

each interval you know I have a very nice structure. So, that you know this is basically 

data structure corresponds to this that when you walk off from these nodes towards the 

root, we are not going to visit more than again about 2 log n towards the nodes. So, this 

entire thing therefore, gives us a order log n update time for adding or deleting in a 

interval, but beware that this is not a completely dynamic process because this intervals 

are known to us in advance. 

 I cannot deal with an interval whose end points do not coincide with this end points, but 

in the context of the rectangle problem, we are know we know all these things and 

therefore, the entire thing about the line sweep on the rectangles, then computing the area 

will work in n times each  update will take you order log n for each event point and the 

whole thing will be order n log n. So, we can compute the area of the rectangle in order n 

log n. So, we should end here today. 


