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We had started looking at the basics of edited learning. As I mentioned, this course is 

largely about distributed optimization. So we won't go too deep into distributed learning, 

but it is an emerging area. In fact, I have already gained a lot of attention. 

 

 So, we basically want to understand the fundamentals of edited learning. So, just to 

briefly recap what edited learning is. So, this is the kind of setup we have. And this is 

essentially about taking the computation to the edge device, right? So, you have a central 

server, and let's say you have plenty of edge devices, okay? And this is how it works: the 

central server will have several rounds of communication with the edge devices, which, 

let us say, we are using to train a neural network. 

 
So, what this central server would do is, in some communication round t, it would 

basically broadcast its weight \( x_t \) to these edge devices. So, this x t is broadcasted. 



Now, these edge devices are equipped with their own data samples, right? So, let us say 

this has n₁ data points, n₂ data points, n₃ data points, and nₖ data points. And what do 

these edge devices do with these weights. So, what happens once the central server 

communicates the XTS? So, it basically runs a few local updates, right? So, every edge 

device makes a few local updates, and we denote these local updates as tau sub i for the 

ith edge device. 

 

 So, it is going to run tau sub i number of local updates, and the way this works is that we 

are essentially going to define something called x at t plus 1, or let us call it x x, or rather, 

let us call it x at t instead of x at t j, which essentially implies. So, you have the ith edge 

device or ith client, and j is an index from 0 to τi minus 1. Therefore, xtj0 (or x, sorry, 

xt0) is the same as xt that has been communicated by the central server. And then, in a 

mini-batch, we make an update, which will be \( x_{t,j} = x_{t,j-1} - 1 \). Some step size 

times, you take the gradient evaluated at \( x_{t,j-1} \) and the data points that have been 

included in that mini-batch, okay? So, this is how we update, and this update runs forever 

from 0 to tau i minus 1, right? I mean j goes from 0 to tau, 1 minus 1. 

 

 So, if I let us say, let's even write j plus 1 here. So, this essentially becomes j, and j is an 

index number in this set, right? So, this is how every agent or client is updating these 

x_t_j's, and then what happens is that these clients will communicate back to the central 

server x_t_i_tau_i_tau_sub_i, right? So, in this case, \( x(t_1, \tau_1) \) and \( x(t_2, 

\tau_2) \). So, all this information is going to be communicated back to the central server, 

and the central server then basically computes x at time t plus 1, or let us say x for now; 

let us assume we call it x at time t plus 1. So, weighted \( i \) equals 1 if there are \( m \) 

agents involved, or let's say \( m \) clients involved. So, p sub i x i t tau is okay, and then 

this information is communicated back to the clients. 

 
 This process continues with communication rounds. The sentence is already 



grammatically correct. However, if you want to rephrase it for variety, you could say, "Is 

this clear to you?" So, how do we choose this \( p_i \)? So, p sub i is the relative weight 

applied to a particular agent, and how do we choose it? Usually, it depends on the number 

of data points. So, if there are \( n \) sub \( i \) data points. So, p_i is usually n_i divided 

by the total number of data points. 

 
 This is typically how we choose these weights, p sub i. So, in the last class, we looked at 

the effect of certain factors. The parameters that essentially govern the overall federated 

learning framework are, let's say, the number of local updates that you run, right? Should 

we run too many local updates or too few? So, what is the effect if we run, let us say, too 

few local updates in terms of error convergence? Is it going to take longer to converge? If 

we take very few local updates, is it going to take longer to converge, right? So ideally, 

we should run many local updates. But if you run a lot of local updates, what ends up 

happening? The average of the individual optimal solutions is correct, and that is also 

something that is not desired. 

 

 So, that is one thing. The other thing is regarding the batch size. If the batch size is large, 

do we have more updates or fewer updates? If the batch size is large, then we have fewer 

updates. So again, a larger batch size means that it would take multiple communication 

rounds—many more communication rounds—for the algorithm to converge. So, all these 

parameters play a role. 

 

 So, today we are going to examine the sources of computational heterogeneity in 

federated learning. The effect of "like" essentially updates a generalized update rule for 

what is referred to as the generalized update rule for federated learning. Then we would 

look at something called the FedNova algorithm. So, FedAverage is what we have 

examined up to this point. We would look at something called the FedNova algorithm. 

 

We would also consider fairness because each agent has received its own data points. So, 

how do we account for fairness in federated learning? So, that is what the measures of 

fairness are. So, these will be the topics of discussion in today's lecture, okay? So, the 

sources of computational heterogeneity are. So, once again, consider the same setup: we 

have a central server and multiple clients. There is an exchange of information between 

the server and the clients in this manner. 



 

So, what are the possible sources of computational heterogeneity that you can think of 

among these clients? So, let us say this particular client has n1, n2, n3, n4, and nk data 

points, right? Suppose this is a setup, and it is also assumed that n1 is greater than n2 and 

so on, up to nk. So, what do you think would happen if, let's say, we use a fixed number 

of tau? So, tau is the total number of local updates, which is kept fixed. Let's say tau_i is 

the total number of local updates, right? So, what is the formula for τ₁? E times n is over 

b, right? So, one source that you can consider as a potential source of computational 

heterogeneity is. So, if n1 is, let us say, greater than n2 for the same batch size and the 

same number of local epochs, E, you would have a larger τ1 compared to τ2, correct? So, 

that means if E and B are kept fixed across clients, then in this case, we have τ₁ greater 

than τ₂. So, we would have more local updates here then and fewer local updates there, 

right? That means the x to which it will converge will depend more on this particular 

client's set of points than on the other client. 

 

 Thus, the client with a larger number of data points will have significantly more 

influence on overall performance than a client with fewer data points. This is one source 

of computational heterogeneity. Which is also going to be large, correct? But then, just as 

I said, forget about the waiting part; the total number of local updates is also related to 

error convergence and other factors, isn't it? So, if I have more data points here, that 

means I am performing more local updates; essentially, you have significantly more local 

updates happening here than in this case, where you would have fewer local updates. And 

this would decrease as you move to the right. So, fewer local updates are occurring. 

 



So, among the initial few sets of clients, they would have a larger say than the others, I 

mean, over the entire learning process, right? Is this clear? So, that is one source of 

computational heterogeneity.    How can we potentially avoid this particular source, or, 

essentially, how can we eliminate the effect of a larger number of data points resulting in 

a greater number of local updates? Having different ENVs essentially fixes your tau.    

So, make sure that the tau is consistent among all agents, right? So, that is one way you 

can potentially avoid this kind of computational heterogeneity. That is one thing, but 

what if we, let's say, dedicate a fixed amount of processing time?   So, if we dedicate a 

fixed amount of processing time to individual clients, we can determine the number of 

local updates. So, what do you think will happen? So, essentially, we can have only a 

capital "T" number of clients. 

 

 Maybe the capital T refers to the total time that each client can spend performing local 

updates. So, what do you think would happen in that situation?    Yeah. So, this is it, 

right? So, if there are slower clients, So, if there are slower clients, a slower client would 

make fewer updates. So, if there are slower clients, a slower client would make fewer 

updates. Then the clients that are faster, right? Because if you fix the total computation 

time, that is what matters. 

 

 So, that is another source of computational heterogeneity. So if we fix let say tau across 

clients then slow clients will take much longer to finish No, I am saying that if, let us say, 

you fix tau and the number of local updates you are going to make, then slower clients 

will take much longer to finish. Additionally, if you fix the computational time, you will 

not be able to complete as many updates, right? Finish their updates, and if that is the 

case, what are the consequences of this particular situation? The central server would 

have to wait for a certain amount of time before it can make the next update or initiate the 

next communication round.   So, this is essentially a bottleneck. 

 

 So, it is bottlenecked. Each communication round is important.   A quick way to fix this 

is to allocate capital T times your total computational budget. So, this is called straggling, 

by the way, and I mean these are the stragglers. So, if you want to eliminate the 

straggling effect, you need to address it. Some capital T's allow clients to make as many 



updates as they want within that allotted time and project. 

 
 Now, the downside of this effect is that the faster clients will make many more updates 

than the slower clients, right? Corrected: Therefore, we will make more local updates; 

however, we will also consider other factors. And again, this would have a similar effect 

to what we observed in the context of having a different number of data points, right? So, 

the client with a larger number of data points was making more updates; this is a very 

similar situation.    The faster clients here will make a greater number of local updates 

within the allotted computational budget, correct? So, this is another source of 

computational heterogeneity. This is another source of computational heterogeneity. So, 

besides these two sources, can you think of any additional sources of computational 

heterogeneity? If you look at this particular algorithm, for instance, you will see its 

unique features. 

 

 So, let's say that every agent starts using different learning rates or hyperparameters, 

right? Maybe they are using a second-order optimization algorithm, such as Adam or 

something else. So, not only the step size, but perhaps the momentum term will also be 

included. Therefore, not only will the step size be included, but perhaps the momentum 

term will also be included. So, now for every given gradient—let us say, the gradient. 

 
 Agents may be making, let us say, faster updates in the sense that they could be moving 

too much in the direction of the gradient, or perhaps a particular client is using a very 

small step size.    So, even though it may be making many local updates, it is not 

progressing much toward what it should have achieved. So, the differences in the 

learning rates and the differences in the hyperparameters are other sources of 

computational heterogeneity. Is this clear ? Variation in hyperparameters, such as 



learning rate and momentum, is another source of concern. So, why do we care about 

computational heterogeneity or other forms of heterogeneity in federated learning? As I 

mentioned, we are trying to work with clients that are either computationally very 

different in terms of computing power or in terms of the kind of data that each client 

possesses, which is also likely to be highly variable. 

 

 And so, in the presence of all these uncertainties, what kind of guarantees we can 

provide is what we are trying to understand in today's lecture. Therefore, in light of all 

these uncertainties, we are trying to understand what kind of guarantees we can provide 

in today's lecture. So, it is essentially about variations in computing power, variations in 

hyperparameters, variations in the total number of local updates, and so on. Can we still 

guarantee something meaningful within the framework of federated learning? So, that is 

what we are trying to study. 


