
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-12

Lecture - 44: Convergence Analysis of FL

So, just like we had the just like we had this algorithm this theorem for decentralized
SGD We also have a similar result on federated learning and how and when federated
learning works and what are the sort of error rates that we can or error convergence rates
that we can provide similar to the centralized SGD that we looked at and the
decentralized SGD that we looked at. So, the assumptions, the key assumptions, it is
going to be very similar to what we had made during decentralized SGD. So, the first
thing is the Lipschitz smoothness of the local objective function. So, that means function
fi is L Lipschitz. for every, so this is true for every function, every local objective
function and for any points x and y. This is the Lipschitz smoothness of the local
objective function.

Then we assume that the gradients are going, stochastic gradients are unbiased estimates
right? So, that is another assumption that we had made in the context of decentralized
SGD. So, stochastic gradients is an unbiased estimate. So, meaning the expected value of
the stochastic gradient is equal to ok. Then we are also assuming even in the context of
decentralized SGD that the stochastic gradients have bounded variance.

So, essentially to say that variance of gi this is going to be bounded or the expected value
of combining the unbiased gradients and the bounded variance.



So, this is what you get ok. And finally, bounded dissimilarity is again related to data
heterogeneity the kind of assumption that we made in the also made in the context of
decentralized SGD. So, bounded dissimilarity says that there exists there exist parameters
beta square greater than equal to 1 and kappa square greater than equal to 0 such that.
square plus and if for iid data if the data is iid.

So, you have beta square equal to 1 and kappa square is equal to 0. So, assuming you
have these assumptions you can show that if you work with m clients which is c times k,
c is the fraction of clients that you are going to be working with. You choose a learning
rate, which is basically like this where tau. So for now we are going to be assuming that
every agent performs the same number of local updates, which is going to be tau. So tau
sub i is what we had, but then we assume that it's the same number of local updates that
every agent works with.

So if we have this, then after T communication rounds, capital T communication rounds
from the server. to T community central server, this is how you can bound the error in
terms of the total number of iterations. So, now if you want to get epsilon close and you
would have to assume that this is less than equal to let us say epsilon over 2 and epsilon
over 2 and then that basically gives you an estimate of the total number of iterations
required capital T to get epsilon close to the to make the error epsilon close right or
epsilon small. Is this clear? So this is very similar to what we the result that we looked at
in the context of decentralized SGD. Obviously we have more parameters here because in
federated learning let's say the number of selected clients is an additional hyperparameter
that we work with or the number of local updates that we perform which is tau that is
another parameter that we work with.

So this is the result. So let's try and understand like basically revisit the basic
understanding of federated learning and see what different how different parameters



affect the learning behavior. So, the first question is. So, does the convergence between
error and communication rounds. So, that improve does it improve with or deteriorates
with the if you change these hyperparameters? So, essentially this error essentially
convergence of error as a function of total number of communication rounds.

Does it improve if you increase the fraction of participating workers? What do you
think? You also have the result here, but what do you think? Does it improve as you
increase the number of participating workers or clients? If you gather information from
more clients, do you think the error would converge faster? right. So, it is better as you
increase the value of c right, something that we have already looked at which is over
here. As you increase c, you see the total number of communication rounds required that
gets become smaller. So, as you increase m, you see you have a square root of m kind of
thing which basically supersedes this linear growth again right? So, that is one thing. If
you increase the mini batch size, what happens with the total number of local updates? It
becomes smaller right? So, if you have smaller number of local updates, we saw that you
would require more rounds of communication right.

So, this becomes worse. What about increase in total number of epochs? Better right. So,
it will be better. But do we really want to increase the total number of local epochs to a
significantly large number? So in most cases it is better. Like if you have too many local
updates happening at the same time and we will look at one particular example.

But if we had too many local updates happening, so then what would happen is that the
model would overfit on the local training data. So, when you aggregate information from
everyone, so you would have to first of all unlearn the overfitted behavior because your
objective is to get a common set of features from every client right. So, then it would
require more number of more rounds of communication. So, in general as you increase E,
increase the total number of local epochs. it basically improves the convergence behavior
in the sense that you would require fewer communication rounds to get to the same error,
but beyond a point if it once it starts overfitting them like the model starts overfitting the
data that is when you will have an issue right.

So, it is largely better, but if E increases too much. then they can be overfitting right.
What about higher data heterogeneity? If you have higher data heterogeneity across
clients, do you think does it improve the performance or makes it makes it worse? Worse
right. So, this would be worse. right and what about these parameters beta and kappa.

So, beta and kappa if these parameters increase that means there is more dissimilarity
right? So, if you look at the assumption beta square is greater than equal to 1 and kappa
square is greater than equal to 0 and if you increase them beyond this for iid data beta



square is equal to 1 and kappa square is equal to 0 right. So, as you increase beta and
kappa that means you are tending more towards heterogeneous like non-iid data and this
will also worsen the performance. So, this would also become worse. Is this clear to
everyone? So, let us see how what happens to the anticipated wall clock time per
communication round. So, during each communication round.

So, when what do you mean by each communication round? The central server basically
runs. So, this server update is essentially what we are talking about. So, how much time
does it take for this server update to happen? So, each communication round. So, as
increase in the fraction of participating clients, what do you think happens to the wall
clock time? You are going to be communicating with lot more workers or lot more
clients. So, that increase in the fraction of participating clients would increase in the wall
clock time, the time it takes right.

So, this basically increases. What about increase in mini batch size? it will, so if you
increase the mini-batch size that means you are doing full gradient descent and usually it
takes time then to perform gradient descent in batches. But it like, so it can both increase
and decrease depending on the model parameters. So there is no conclusive sort of way to
say that wall clock time will always increase. Let's say if I have, if I work with one batch,
batch size of one and I have hundreds of examples, so I have to run a for loop for hundred
times right.

If I have batch size of five maybe I will have to run for loop 20 times. So this probably
works better but if I work with a batch size of 100 maybe I have to store 100 data points
and like extract it and so on. So it really depends on model hyperparameters but it would
mostly increase but it may increase and decrease depending on the model parameters. So,
there is no conclusive way to say depends on how many hyper like model
hyperparameters are there and how many model weights are there. What about increasing
the total number of local epochs? Increase right? So, this would increase.

Data heterogeneity? it does not affect right data heterogeneity has nothing to do with that
wall-flop time per per communication downright. So, it does not affect. Similarly, if you
increase beta and kappa that also does not matter right because this is related to data
heterogeneity and that does not matter. So, the last thing that I wanted to talk about which
is stressing upon this particular point here, this overfitting issue right as we mentioned.
So, should we use I mean as we had seen in this particular example on training two-layer
neural network or the CNN for MNIST dataset. As we increase T, as we increase the total
number of local epochs capital E basically requires that basically translates to fewer
number of communication rounds. But is it always the case and I mean it may it will be
the case that it will largely require fewer local rounds, but there is an another issue with



this and with this data heterogeneity. So, let us say you have two functions there are two
clients just consider very simple like should we have more number of local epochs or not.
So, that is what we are trying to address.

Let us say you have two functions and function 1 is x minus 1 whole square and f 2 is 2
times x minus 5 whole square ok. So, if I look at since I mean typically we are looking at
functions for which stochastic I mean you have data-driven evaluation of functions right
like on the loss function. So, in this case we are assuming deterministic functions no
stochastic gradients. So, that global objective would be let us say we use 50 50 percent
like 0.5 0.5 of those. So, it would be half of x minus 1 square plus x minus 5 square. ok
this is the global objective function. So, what is x star here the optimal solution? So, for
that if you were to compute the gradient and then set it to 0 right. So, that would be x
minus 1 plus 2 times x minus 5 you set it to be equal to 0 and this gives you x star is
equal to So, this is the optimal solution that you expect the neural network or the
federated learning framework to converge to.

And this was largely this would largely be the case let us say if I let us say perform just
one round of local update. So, then agent 1 would have x1 t plus 1 is ok and likewise x2 t
plus 1 is x t minus 2 eta times x t minus 5 ok. So, this is just using one local epoch right.
So, this would give you if I just average this, this is nothing but saying that x t plus 1 is
going to be simply x t minus like if I just combine 0.

5, 0.5 of this, it is going to be eta over 2 times x t minus 1 plus 2 times x t minus 5. This
is just performing one round of look like basically one round of local epoch or one local
epoch. And when this converges, that means the gradient becomes 0 and you would see
that xt would converge to the optimal solution which is 11 by 3. But what happens if I
perform multiple rounds of updates? If I perform too many rounds of update, locally what
would this converge to? xt would converge to or xt1 would converge to? Just one,
because it will converge to its local objective value, local optimal solution Similarly this
would converge to 5 and now if you take 50-50% of those it is going to converge to 3
instead of converging to 11 by 3 right. So you do not want to overfit or you do not want
to perform too many local updates at the same time.



so that I mean so that you avoid potential overfitting and so that you can also ensure that
the model converges to the global optimal solution of the global objective function and
not the combination like some weighted combination of the optimal solutions of the
global objective functions ok. So, that is the effect of data heterogeneity. if you have like
in this case we have heterogeneous data. So, we are assuming they have different local
objective value or different local optimal solution. And in that case, if you perform too
many local updates, you would have this issue that it does not like the federated learning
framework does not converge to the desired optimal solution.

Is this clear? So yeah, that is all I wanted to cover in today's lecture. So, we will look at
more of federated learning in the coming weeks. Thank you.


