
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-11

Lecture - 43: FedAvg Algorithm

So, in the fed average algorithm that we talked about right in the original federated
learning paper by McMahon here. So this particular paper, it introduces this fed average
algorithm. So it has its local objective function at individual clients and that it has its
global objective function. So what would be the local objective function that it is trying to
solve? So that is going to be fi of x and that is going to be, so how many data points are
there at the ith client? So this is local objective function at the ith client. So, this is a
function. So, eta j is basically, so there are ni sub points.

So, this is the local objective function fi of x, which is the average of all fi's in some
sense. What would be the global objective function f of x? So, local objective function is
at the ith client, global objective function is basically from the perspective of the central
server. So, what is the global objective function? something that we have already been
looking at. When we talk about distributed optimization, what is the objective function
that we are trying to minimize? Every agent has its own private objective function f sub i.

So, sum of it, but instead it will be a weighted sum of it, weighted by the number of data
points. So, essentially it would be, let us say k equal 1 through capital K, let us say n is
the total number of data points times k of x which is where this fraction p k is essentially
nk over total number of data points. So, it is basically the weighted sum of the local
objective functions. Is this clear? So, let us look at how this particular fed averaging
algorithm works. So we have two different updates, one is the server-side update which is



on the global objective function and then you have local objective function, so we have
the client-side update right.

So as I said what this algorithm does is basically it communicates xt at each let's say at
the tth round, tth communication round it communicates xt the current set of weights.
Now using those weights every edge device or the participating edge device would
actually train a model would and then they would get their own let us say new set of
parameters, let us call them xti for the ith client and then they will be aggregated together.
So, they will be performing tau i number of local updates here right, something that we
have already looked at. So, they will be performing tau, tau sub i number of local updates
and then this information would then be sent to the centralized server. So let's see how
this particular algorithm works.

So this algorithm has two components. One is the server update. This is so we are
describing the fed average algorithm here. So you have the server update. So, in server
update what happens is that the first thing is the initialization.

So, initialize the model parameters and let us say x naught ok. Now, for each
communication round. So, for each communication round t. So, t is going to be a number
from 1 to some capital let us say T minus 1. So, what happens or if it is the start from 1
then there is no need of T minus 1 here, ok.

So, for each communication round we select a set St of m clients. So, you randomly
select a set of m clients out of those K, capital K available total clients. So, m clients
from k clients. So this is selected uniformly at random. Then we perform a function
called client basically we run this function called client update.

So client update would have the client index i and to the client it would be sending its
current weights or the current estimate of the weights which is going to be Xt right and
the chosen client and receive. So, what are you going to be receiving? You are going to
be receiving x t plus 1 i. So, after client i basically uses this current weight x t and then it
performs multiple local updates, it is going to have an updated value of x t, let us call this
x t plus 1 i, where i indicates it is the ith client. So, it receives that information from the
from client i in basically in your set st right. And then essentially aggregate So, this is
what you do.

So, this is the server side of things and look at this particular function client update. So,
let us see how this particular function works. So, what you are going to do is you are
going to initialize the weights. initialize the model with xt right whatever xt that you are
going to be receiving you are going to be initializing the model with that subset of it. So,



initialize the local model is Xt let me use a different notation.

So, we are going to be using xt 0 to indicate. So, first of all it is going to be performing
tau i number of local updates the ith client. So, this 0 is going to indicate the number of
like basically how many updates have elapsed. And i is going to indicate that it is going
to be the ith client, t is basically indicates the communication round. So, it is a tth
communication round.

So, this is going to be essentially xt right. So, you are going to be initializing this with xt
for and you run this for tau i number of local updates which is a n i. So, we are going to
perform these many local updates. Next, what do we do? each local update index j in 0, 1
tau i minus 1. So, what do we do? Do the following.

So, we perform a gradient descent on the mini batch that we are going to be selecting
during each local update, ok. So, that is essentially the sample mini-batch, sample
mini-batch, let us call that mini-batch I think we will just use the same notation. So, zeta j
from the local data set. d sub i right. So, every agent has got this every client has gotten
this data set d sub i and we are going to be sampling a minibatch zeta zeta j from that data
set and on that data set you perform.

So, you are going to get x t j plus 1 as x t j at the ith client minus the step size times look
at this stochastic gradient g evaluated at x i e j ok. So this is what you are going to be



doing. So essentially performing a gradient descent on the local batch and then you will
be having these many rounds of local updates. And after this is done, so you are going to
be returning So, what do you need to return? x i t tau, tau sub i. So, that is what you are
going to be returning.

And once you return this, so this is treated as x t plus 1 i from the client side perspective
and then it basically aggregates. So, this is the fed averaging algorithm. Is this clear? So,
essentially there are multiple parameters involved. One is the the total number of local
epochs which is capital E, the batch size is going to have a role and then there are other
parameters like data heterogeneity and others that are going to have a role. The number of
clients that you end up choosing a sampling that is also going to play a role essentially
the fraction of clients that are involved in each round of communication.

So, that is so let us see how these different parameters affect the learning behavior and
then we will try and come up with a mathematical result that basically captures our
intuition and so on. So, this is an exam this is the result from So, we essentially trained
two different types of neural network. So, is everyone aware of this MNIST data set
which is a data set of handwritten essential digit data set from 0 through 9. I think it is a
28 by 28 cross 28 sort of binary-like image or grayscale images. So, in this experiment
two different types of neural networks have been trained.

One is the two-layer simple feed-forward neural network and the other one is a
convolutional neural network. And essentially what we show over here is the total
number of communication rounds needed to ensure that this two-layer neural network is
basically attains this 97 percent accuracy and the CNN that achieves 99 percent accuracy
ok. So, on MNIST if you design a good enough neural network you can easily get 99.4,
99.6 kind of accuracy. So, for CNN to achieve 99 percent accuracy it is not something
unheard of on MNIST. So the first thing that we, so I mean two different types of
experiments were performed when you had the IID or the IID data distribution across
multiple clients. So in that case, so in this case we are considering 100 clients. So MNIST
dataset if you know, it has 60k images. So 60k images means, 60k images of, so that
means you have 6k images of each label, basically from 0 through 9.

And when you have these 100 clients, they are each receiving 600 examples. So you
randomly shuffle and partition. So on an average, every agent would have the same
number of, so everyone would have the same 600 images to work, like similar
distribution of 600 images to work with. So that means out of those 600 images, on an
average, 60 would be from digit 0, 60 would be from digit 1, 60 from digit 2 and so on
for every agent.



So the data distribution is IID. In the non-ID experiment what was done was the data was
sorted by labels. So essentially you had all the zero digits followed by one digit. So
instead of random shuffling and partitioning, it was sorted and then sort of partitioned. So
divided into 200 shards of size 300 each. So every agent and then for each client you
essentially share two shards.

So essentially what you end up doing is every agent would have these 300 images from
specific examples. So, at a time every client would only have at would only have two sort
of unique digits to work I mean only two digits to work with. So, essentially either 0 1
similarly other client would may have 0 2 and so on right. So, that is that is how that is
the non-ID experiment.

So, the data distribution. So, each client does not have let us say visibility to every like
other images right other than those two classes it would not have visibility to all other
instances. But because other models are also being trained on this and that there is
information sharing with central server which is aggregating information from all other
clients. So it is learning from their sort of training. So, that is the non-ID experiment and
you would imagine that if it is a non-ID experiment the number of total number of
communication rounds is going to be required for the similar setting it is going to be
much larger than the ID experiment that is what you see everything else remaining the
same. So, this is the ID setting this is the non-ID setting.

So, you can see that the total number of communication rounds required I think here you
would see maybe a drastic change. and so on. So, this hyphen indicates that I mean the
model could not reach this particular accuracy. So, essentially you could not train the
model to the desired accuracy. So, that is when the I mean the experiment could not be
completed and that is noted by this hyphen here.

And you can see that when you have 75 and 70 whereas with non-IDKs you had 443,
380 number of communication rounds and so on. Similarly, over here you have these
many. So, when you have data heterogeneity, if the data is going to be heterogeneous,
then total number of communication rounds required to reach the desired accuracy that is
for certain error threshold that is going to be much larger. So, that is the effect of data
heterogeneity. So, B is equal to infinity means you run the full batch gradient.

So, the batch size is essentially the entire data set whereas, B equal to 10 means you have
you have a mini-batch of size 10 ok. So, we are looking at the effect of data
heterogeneity. So, that is clear if the data is going to be heterogeneous you would require
I mean many number of communication rounds then if the data is homogeneous. The
other is about client participation. So when we see that the fraction C is tending towards



1, this number keeps on reducing, right? The number of communication rounds required
keeps on reducing.

So that means as you are aggregating information in the same communication step, in the
same communication round, if you are aggregating information from let's say all the
clients then you would require the fewest number of communication rounds because then
you would you would receive the entire data distribution whereas let's say this would be
particularly relevant in the context of heterogeneous data right. So when you have
heterogeneous data and you are not aggregating information from all the clients so that
means you may be missing out on certain digits and that's why the communication I mean
the number of total number of communication rounds required may go up. As you
increase this thing, the total number of communication rounds required basically goes
down. If more and more agents are involved or more and more clients are involved, the
total number of communication rounds, it basically decreases. Similarly, if the data is
homogeneous or the data heterogeneity is lesser, the total number of communication
round also becomes lesser.

Is this clear? So, this is about the effect of total number of local epochs or capital E. So if
capital E is lesser that means you are performing fewer local updates and if you are
performing fewer local updates then you would require as you can see if you are
performing fewer local updates then the number of number of round communication
rounds required is much more right. So, but then for the same set of weights, if you sort
of train the model enough times on this, then basically perform multiple local updates on
the same data set, then the communication total number of communication rounds
required that sort of starts reducing as we So, this is for the MNIST CNN example, then
there is a Shakespearean data set. So, this is training in LSTM for predicting the next
world based on the previous words and again you can see as you increase the total
number of local epochs and now total number of rounds required basically keeps
basically decreases right. So, what about the bath size, mini bath size? How does that
affect? So, first of all, it is clear to everyone that as the total number of local epochs
increases, you need fewer communication rounds to reach the target accuracy.

That is clear, right. What about the batch size? So, if you have a larger batch size, you
would require fewer local updates, right. If you have a larger batch size, tau sub I was E
and ni by B, right. If you require larger, if you work with larger batch size, you would
have fewer local updates and fewer local update means that essentially you increase the
total number of communication rounds, right? As we saw that when E was a small, we
had fewer local updates and in fewer local updates, we needed more communication
rounds. Similarly, if you had larger batch size, that means fewer local updates and
therefore you will have more communication rounds and that's what you see, right? If



you have a larger batch size, the communication rounds required was 2488 if you have a
smaller batch size then it becomes lesser similarly you have 401 here and when it is 10 it
becomes 192 and so on. Is this clear? So, essentially if you have larger number of local
updates, then you would have actually fewer communication requirement of fewer
communication rounds to reach the target accuracy and that is how E and B are affecting
your essentially E and B affect your tau i and tau sub i and therefore, they eventually
affect the total number of communication rounds required.

Is this clear? So, this is just illustration of how the batch size sort of impacts the total
number of rounds required and you can see that when you have smaller batch sizes you
reach the target accuracy much sooner than if you have the if you have small larger batch
sizes. Thank you very much.


