
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-11

Lecture - 42: Introduction to Federated Learning

Alright, so today is going to be an introduction to what we know as federated learning
and it is a very hot topic in distributed machine learning and in general if you want to
train a single neural network model based on data that is distributed across millions of
workers or millions of servers. So a typical example would be, if you use let's say an
Android phone, so essentially your Gboard or any Samsung keyboard or Android
keyboard. So the idea is, as you type something, the next word, and it starts suggesting
you the next word, right? So it really depends on how people use their keyboards, and
basically the best prediction would be modeled accordingly. So how do you think such
kind of models are trained? So let's say this is a snapshot of Gboard from Google. So how
do you think such kind of models are trained? So it has to be, first of all, like let's say
Google wants to roll out something, right? It has to be a single model that has to be rolled
out across all devices, right? So the question is how do we, like when we have data
distributed across so many workers, so here we are talking about training neural networks
on edge devices like mobile phones or IoT devices, which may not have the luxury of
having like enormous GPUs to work with. So far we had looked at decentralized SGD or
parameter server approach where you had few clients or servers working on their private
data set.

They were computing gradients on their own data and then Either they were, like if it
was decentralized SGDs, so there was no centralized server. So essentially they were
doing some kind of gossip algorithm to ensure that the parameters of their neural network
or the model converge to the same value. But then, there I mean you still assume that
there are a few maybe tens or hundreds of such workers. The moment you start having
thousands or millions of such workers or clients, the challenge is how do you in real-time
get information from so many different agents? and that becomes practically infeasible
right.

So in that regard, federated learning was sort of devised to essentially work with training
of neural networks on edge devices and that is what we are going to look at it today. So
when we say edge devices, so essentially you have, what do we mean by devices? So cell



phones or your IOT devices. So, essentially that basically have contain a lot of devices
collect huge amounts that can be informative for ML model. So when we say huge
amount of data, so every user, basically they have their own pictures or their own text to
work with. So everyone is just accumulating a huge amount of data or also creating a
huge amount of data.

And whatever model that needs to be deployed, it essentially should try to derive
common features across all different edge devices. And such a model would be very
informative because that would be largely applicable to a broad audience. For instance, as
I think towards the beginning of this course, I had mentioned that like IITB uses this
lingo that I mean you guys add max to a lot of words, infimax, coolmax and things like
that. So, if you have lot of IITB users, just start typing like this and eventually spread out
to the rest of the world and you continue to use the same lingo, eventually you would see
that that kind of thing also starts popping up when in the Gboard as well. So, even though
everyone's data is highly heterogeneous, it is private and so on, most of the training is
basically most of the feature that essentially I mean the two different individuals may
share.

So, essentially this learning happens on common features between different agents or
different workers. I mean there are these edge cases which I mean as we train the neural
network right, there will always be outliers and we do not try and fit to those outliers. So
essentially you would see that if once I mean if once you are communicating with lot of
IoT users or lot of cell phone users, you are trying to essentially learn those common
features that connect these different and that is how the Gboard or any other prediction
models are based on. So that is an aside thing, but why do we have qwerty keyboards and
not keyboards which have ABCD and so on. It's an aside thing.

What could be the reason why people decided to work with this kind of keyboard? If you
remember, I think Micromax at one point had launched this phone with ABCD keypad
instead of QWERTY keypad. I mean eventually Micromax didn't last. No, that's not
really the reason. So before we had this electronic revolution, all keyboards used to be
mechanical keyboards. So the typewriters used to be mechanical typewriters.

And the problem with mechanical typewriters is they were based on hydraulics.
Essentially if you start typing too fast, in fact you can show that like if you start having
ABCD instead of QWERTY, you can have a better typing speed. But if you start typing
too fast, it will result in paper jams. So, they arranged it in such a manner, so that like it is
generally not possible to type too fast and once people like once the society transition to
these electronic keyboards, the teachers or the ones who were teaching typewriting, they
were the ones who were trained on those quality keyboard. So, it kind of got I mean the



same sort of trend kind of got translated to the digital revolution as well and even the
digital keyboards are now quality keyboard, so it has no I mean This has been designed
so that you are not too efficient.

So when we say about training data, so what would be a training data on edge device like
cell phones? So what every user types on their phone. So again, to start with, we have
millions of edge clients. Essentially, we are talking about cell phones and these tiny-edge
devices. And the question is, how can one utilize the parameter server framework,
something that we have already looked at, right? So just to recap, what was parameter
server framework? So you had a centralized server, so parameter server, and there are
these workers, right? Let's call them workers W1, W2, and so on. So, everyone has their
own private data.

So, let us call these data sets d1, d2, dn, and so on right. And in the parameter server
approach the idea was that the parameter server would broadcast and let us say t th
iteration, it would broadcast the weights wt. So, these servers on their private data set
they would end up computing the gradients on their own data set, and let us say they
would they would communicate delta Wt 1 essentially the gradient information right this
would communicate delta Wt 2, and so on delta Wt n and then these and then the
parameter server would perform this update which is Wt plus 1 is Wt minus some step
size times let us say k equal 1 through delta Wt. So this was the parameter server
approach. So what are some problems with this particular strategy? Can you think of
certain potential issues with this particular strategy? Synchronization of updates is one
thing.

So the biggest challenge that you see, again you have to look at this particular point. So
there are millions of edge clients. So, if you have millions of edge client that means you
have enormously huge data and for the parameter server it has to wait for information
from so many edge devices and it has to actually have huge communication bandwidth.
So, when we talk about in terms of, so parameter server approach requires in fact



prohibitively large large communication bandwidth right because you are working and
that is because we have we are working with millions of edge devices. So, you have to
have that much bandwidth to be able to communicate with that many edge devices right
communication bandwidth since it exchanges information with millions of edge devices.

What is the other issue with this? So while I mean that may not directly be the case you
can show that so another concern is data privacy. And even though you are not directly
sharing your data in certain cases you can show that if even if you are sharing your
gradient information to a parameter server or a centralized Just by looking at the gradient
information and looking at your own state, there is a way to estimate the kind of data that
a user may have. So, you can try and recreate. So, there are some data privacy and
sensitivity concerns. So, sensitive information is another concern.

And what is the third issue? So these edge devices may have limited internet
connectivity, right? So to be able to communicate with your centralized server, you would
need a good internet connectivity at all times, right? Because it's waiting to receive data
from all the devices or all the users and all the users need to be connected to internet to be
able to communicate. Otherwise, this would just keep on waiting for data from all the
users and only when it receives data from all the users, then it can think of performing the
update, right? So edge devices may have limited internet connectivity. So, to account for
this protected learning was sort of devised as a framework to be able to perform machine
learning at scale or distributed machine learning at scale. And the key idea is instead of
trying to train a neural network at a centralized server or centralized location where you
would need either access to all the information to start with or you would require a
complete like let us the other solution is to have a completely centralized approach right
where all the data is like all users private data is stored at a centralized way and the
centralized server basically looks at those data points and then performs like a and trains
a single neural network model. So, this either this or you have a parameter server
approach where you wait to communicate with all the users or all the agents or all the
clients in each iteration right and that basically places a huge communication bandwidth
requirement.

So, parameters this federated learning was a I mean basically was devised to essentially
elevate these issues and the sort of key idea is you instead bring the training to the edge
well not data but devices. Essentially you bring the training to edge devices and we will
look at how federated learning works. But it is somewhere hybrid between centralized
like a parameter server kind of approach, but there is some level of randomness also
involved. And this was in the seminal paper by McMahon et al from Google in 2016. So
this is the title of the paper where they came up with this fed-average algorithm.



So, this is already used for next word prediction on android cell phones and the key idea
is you only train the neural network. So, you only when it is basically I mean on your
device on your edge device only when it is basically plugged in for charging. So,
essentially do not drain the battery that way that you are always like at the back end it is
always training a neural network that it does not happen like that. So, a particular user or
a particular edge device is only involved when it is plugged in for charging and it is only
few MBs of data that is used on your own sort of cell phone and you are not using data
from anywhere else. So, you are not communicating with any other edge device, you are
just I mean you are essentially cell phone is a standalone sort of trainer of neural network.

And there's a nice sort of, so Google came up with this nice federated learning comic
strip that I think you guys should give a read. So essentially it talks about what federated
learning is and how it sort of came into picture. So it starts with someone coming in back
from a conference enthusiastically, having discovered a way to maintain data privacy, but
at the same time being able to perform distributed machine learning. So, it kind of starts
at like the company the head basically the head of the organization basically allocates few
interns and then the interns they start listing some issues one by one, and then this
basically the main character then basically talks about how these issues are kind of
addressed in this federated learning framework. So, you should give it a read first.

So, one of the issues is the personal data or the sensitivity of the information. And so,
there are these different aspects and eventually talks about how federated learning works.
There is also basically encryption to ensure that whenever data is basically being sent
from user to a centralized sort of server essentially it is properly encrypted. So, no one
can actually reconstruct the data and so on. So, all of these edge devices the data is
encrypted and it basically goes here.

and it in such a manner basically the data is masked. So, it is so that it is basically a zero
sum mask. So, essentially you perturb the data in or shuffle the data in such a manner. So,
that on an average everything is basically kept intact. So, these masks basically exactly
cancel out and so on and eventually basically talks about how federated learning kind of
works.

So, should give it a read it is a nice comic strip. So, the idea is you have a central server
and the central server broadcasts its current set of weights. Let us say you are training on
your single neural network right and it broadcasts the current model parameters to the
different edge devices. So, instead of doing this with all the edge devices, it would select
a fraction of edge device at a time. So, it would not do it for all the edge devices in one
go, it would select a fraction of the edge devices and it would relay the information about
the current parameters.



So, let us say this information x t or the current set of weights are being shared. Now, on
this let us say model 1 or the device 1 what happens is essentially device 1 receives those
current this parameter values of the weights and they start training the neural network on
their own private data for certain let us say few epochs. So, tau i number of or basically it
performs tau i number of local updates. So essentially it trains a neural network based on
the parameters that it has received or based on the current set of weights that it has
received, it basically starts training its neural network on its own private data for certain
number of epochs. So essentially you perform gradient descent multiple times locally and
let's say it ends up getting a weight, let's call it Xt1.

Similarly, the other device would do the same thing Xt2, Xt3 and so on. And then this
particular, let us say there are k devices involved, this particular information is then
propagated back to the centralized server. At the outside it almost looks like the
decentralized approach or SDD or the parameter server approach. But the key idea is we
do not work with all the clients or all the edge devices. We only select a handful of those
and we do not perform a single round of stochastic gradient descent and then share the
gradients.

Basically in the parameter server approach what was happening is give the current set of
weights i'll perform a single single round of update on my data set and i'll basically give
my gradient estimate like essentially average gradient value send it back to the parameter
server or the centralized server in this case you perform multiple rounds of updates okay
on your own data you perform multiple rounds of update and then you have sent the
updated parameters to the centralized server and this is done only for a handful of devices
not for all devices because not all devices are going to be for instance plugged in for
charging at all times right so only a handful of devices are selected randomly and this
update is performed and eventually because devices are being selected at random so it
would like everyone's like let's say at some point you would be basically at some point
you I mean your own phone will be picked up right because So, every edge device has an
equally likely probability of being selected right. So, because it is being selected at
random. So, this is how, so it is not like your data will never be used for training. So, that
is not going to be the case. But then as I said because you are averaging over a lot of
devices, so only the common patterns or the common features are going to get sort of
captured and it is not like your let us say you prefer to use a particular lingo that not
every everyone else around you uses.

So that you would not expect this to be picked up by neural network because it will be
treated as an outlier. So this is the idea. So if we compare decentralized SGD or even let
us say parameter server approach. with federated learning. So what is the difference in



terms of number of workers or servers or clients that both the algorithms need or both the
approaches need.

So with parameter server at a time as I said we cannot work with millions of devices
right. So usually when we talk about parameter server or decentralized So when we talk
about tens or at best hundreds of clients, whereas when we talk about federated learning,
we really talk about a huge scale. So essentially millions of clients. So that's one
difference. What about availability of workers? Do we in case of parameter server, do we
require the workers to be available at all times? So, we assume that we are going to be
receiving information from every worker involved.

So, again in parameter server, we require the workers to be available at all times. In
federated learning I mean that is not needed right. So, these work with a handful of
clients right, work with a handful of clients. What about data distribution? remember the
decentralized sgd theorem that we had looked at so there was this b square term that was
on the data like heterogeneity or the non iid data right so essentially more or less you
want the data heterogeneity to be somewhat bounded so with parameter server or
decentralized sgd we require that the data is roughly homogenous, I mean it may not be
IID, but we require the data to be roughly homogenous for it to work efficiently right. So,
essentially the data that is distributed across different devices or different clients we
require them to be roughly homogenous.

So, if you are talking about let us say classification of handwritten digits from 0 through
9. So, they are in these 10 classes. So, you would require that all these 10 different
classes are equal roughly I mean equally distributed across it may not be the same image,
but you will have maybe equal roughly equal number of 0s and 1s and 2s and 3s and so
on.

So, we require the data. roughly homogenous. With federated learning, you can work
with really heterogeneous data right because since we are talking about edge devices you
have very I mean you are going to have your own personal data or lot of personal data is
going to be there right. So, the data distribution is going to be highly heterogeneous.
What about types of workers? So, essentially when we talk about the compute
requirements of different clients in parameter server or the decentralized SGD, do we
require them to be homogeneous or heterogeneous? So, usually they I mean when we talk
about When you think of parameter server approach always think of as let us say maybe
a GPU enabled device at one particular location right. So, there are multiple such
locations and they are interacting with each other. So, essentially in parameter server
approach the type of the clients are largely homogenous in terms of computer compute
power right.



with federated learning. When we say edge devices, you can have a very powerful cell
phone or someone can work with their own tabs. So you have different types of edge
devices, you have different types of IoT devices, right? So the devices or the clients are
also going to be heterogeneous. What about privacy? So, essentially while at least with
parameter decentralized SDD, there is no information sharing with the centralized server.
You are still communicating with your neighbors and as I said you can potentially use
gradients to estimate the data distribution that one particular agent has. So, I would say
that data distribution can be rearranged.

Since that you can try and estimate what are the in federated learning data is private. So,
and secure. So, you want you do not want to exchange your own private data with your
neighbors or a centralized server and so on. And as we saw in that comic data is usually
encrypted when it goes to the server. So within federated learning, there are these two
different terms that are often used.

One is cross-device versus cross-silo kind of federated learning. So when we say
cross-device, it is the usual use case of federated learning when we have like different
edge devices like cell phones. So, it is basically you are using different devices like a cell
phones or other edge devices to essentially maybe train a single model that would be
cross-device federated learning. Cross-silo federated learning is when you use instead of
devices when we talk about different entities. So, let us say there is a hospital or there is a
bank or there is some other firm and so on and they have their own let us say a server
room or something like that right and they where they use their own different types of
data like a hospital would use a different completely different type of data right then a
bank for instance but then again like you want to train a single model based on these
different heterogeneous data distributions so these are not edge devices particularly may
or may not be edge devices anymore So, you have more sort of a again as I said like it
can be a server room. So, you can have a GPU enabled device for instance. So, more
homogeneous sort of compute devices as compared to the cross-device federated
learning. So, this kind of federated learning is called cross-silo federated learning. So,
where you have these different organizations that are involved and not the individual
edge devices.

So again if it if we look at the distinction between these cross-devices and cross-silo in
terms of the number of devices obviously you are going to have a more like in
cross-device you will have more number of devices as compared to cross-silos right. So
this is again in the range of tens to hundreds whereas would be in the range of few
millions right. What about availability of workers? Since we are talking about federated
learning in both cases, unlike this particular case where we had for parameter server or



decentralized LCT, we required the workers to be available at all times. Since we are
performing federated learning, I mean they will have the same requirements that you do
not expect all of them to be available at all times right. Data heterogeneity again it is
going to be heterogeneous in both the scenarios whether it is cross-silo or cross-device.

So, data is going to be data distribution is heterogeneous. So, this is again a slight
departure from the parameter server approach where we require the data to be somewhat
homogenous right. Worker types, so in worker types cross-silo would have more
homogenous workers as compared to cross-device which is going to have more
heterogeneous workers. So, cross-silo will have homogeneous workers and cross-device
would be heterogeneous. And privacy constraints, it is the same privacy constraint. So,
using the data is private and secure. So, that because both are again part of edited
learning. So, we still have the same privacy constraint. So, data is private and secure. So,
again this is again going to be a slight departure from decentralized SGD.

So, we are going to use certain notations. So, the first thing is the total number of
workers or total number of clients that are going. So, workers, clients, agents. So, all
these terms would be used interchangeably. In certain cases I mean you can also think of
it as devices and so on. So we assume that their total of I mean total such number of
clients is k out of which we would like at a time in each communication round only c
clients would be part like of basically it is a fraction of client that would be participating
that fraction is c.

So essentially c times k is in total number of clients that are going to be participating. So
as I said if in federated learning let us say the current set of weights is xt and on this
using these weights a model is trained on an edge device for certain number of certain
number of rounds right. So, you perform multiple local updates on the local data right.
So, we are going to assume that the mini batch size for this model like updating the
model weights that is going to be B, capital B and that is going to be the same across all
devices. Is this clear? Then number of stored data samples at the ith client, so that is
going to be n sub i.

So, this would have like let us say n1 number of points, n2 number of points, n k number
of points and so on ok. Then the learning rate is we assume that it is going to be constant
across all devices. So, this is going to be eta. So, learning rate because these devices
themselves will be training neural networks. So, they would be using certain learning rate
for these stochastic gradient descent algorithm and that is going to be eta and number of
local epochs per client.

So, what do we mean by local epochs? So, local epochs would be. So, let us say you are



using a batch size of capital B. So one local epoch means that essentially you have
iterated over the entire data set using a batch size of v that is one local epoch. So how
many total local epochs you would be performing per client that is going to be capital E.
So that means you have iterated over the entire batch, entire data set capital E times. say
E is the total number of local epochs, capital B is the batch size and N sub i is the total
number of data points per client or let's say client i.

So, how many local updates will be performed at client i? So, what is tau? So, we call
this tau i. What is this tau sub i equal to? So, again what is the definition of local epoch?
One local epoch means that you have iterated over the entire data set once using a batch
size of b. So, if n sub i is the number of data points. So, ni by b is the total number of
updates per local epoch right and you have e number of total.

So, this is E times ok. So, this is what tau i is equal to. Is everyone with me on this? So
the total number of local updates, so a local update would mean like let's say I give you a
batch and you use that batch to update the weights. So how many such local updates are
being performed? So that is going to be equal to how many times you iterate over the
entire data set of n i points using a batch size of capital B times the total number of local
epochs which is capital E. So this is going to be tau sub i. Is this clear to everyone?
Thank you very much.


