
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-10

Lecture 39: Large-Scale Machine Learning

 So, now this basically sort of gives us an idea as to how to train a neural network using
maybe a stochastic gradient descent like this or of mini-batch gradient descent like this
ok. Now think of a scenario I mean this is basically tells you how to train a neural
network and basically what I mean what essentially we are trying to implement this
particular thing right effectively. It can be gradient computation let's say I have these end
data points distributed across multiple agents. And these agents, I mean, think of it as if
you have your own private data, right? And when Google tries and sort of deploys, tries
to train its global model, it would need inputs from all its users, right? So in that case,
your data is going to, I mean, your data is private, so you wouldn't be sharing the data
with anyone else, so there won't be a centralized training of this. But then maybe together
you, I mean it's possible that all of us would aggregate our gradients together, sum it over
and then send it to Google and maybe they'll train a centralized neural network. They'll
get the new set of weights and this new set of weights then will be sort of relayed back to
us.​

 So there is, like in terms of how do we work with large-scale data. So you can have a
centralized architecture which is also called a parameter server approach and usually
these are trained on I mean your networks are trained on GPUs let us say call GPU 0
which is like yeah. centralized server in some sense and then you have a bunch of other
GPUs. So, GPU 1, by the way servers and workers these are sort of agents all these are in
touch use interchangeably.​

 So, servers you can also call it worker or an agent. So, all these are used interchangeably.
So, you will find based on what text you are referring to. So, we have a parameter server
approach right? So, what happens in this particular case? So, let us say at the beginning
of the first like in beginning of the training. So, first of all every agent has got its own
private data.​

 So, they have their own private data. So, let us call it zeta 1, zeta 2, zeta 3. So, they have
their own private data to work with right and ideally what should happen is. So, the

algorithm that needs to be implemented is wk plus 1 is wk minus let us say the m data
points every agent has or every agent has got ni data points I should i equal 1 through n
sorry ok. So, this is what.​

 I mean ideally let's say you have all these n times like basically n1 plus n2 plus n3 and so
on and n times the data like basically these many data points right and if you had enough
memory to store all of it and if you have enough computation then everything can be
trained on a single GPU right and also assuming that there are no privacy issues. So
everything can be trained on a single GPU but usually we have either privacy concerns or
you have let us say limited memory that it is very difficult to store all the data points at a
single place right. And that is when we want to train this neural network what happens is
that the first iteration this information is basically sort of relay to all the servers. So the
current like at the kth iteration after the end of kth iteration the centralized server
basically tells every agent that the current weights are wk ok. Now on this wk every agent
computes this on their own data, this gradient on their own data and then they basically
relay this gradient information.​

 So this gradient is computed, this gradient information is relayed back. to the server who
just adds all the incoming entries instead of storing their gradients separately. So, that I
mean if let us say the weight vector is d dimensional instead of working with n times d
dimensional vector or storing them separately with every d dimensional vector it receives
it just adds the previous one right because of this additive nature of the loss function ok.
So, it just adds them once everything is added then it this centralized server it performs
this gradient update or essentially the parameter update which is wk plus 1 is the current
estimate wk and the added the all the entries that it has gotten. So, this gradient
information that it has got aggregated gradient information, it performs this parameter
update and this new value wk plus 1 is then relayed back to the GPUs and then they

compute this loss derivative of the loss function on this new updated value wk plus 1 and
this process goes on right.​

 So,t using a centralized server you will still have a distributed training of neural network,
but then we assume an information we assume the presence of a centralized server like
this. So, what is the shortcoming of this particular approach? Something that is very
evident. Yeah. So, one thing is. One thing is, I mean, there's a single point of failure,
right? If the central server doesn't, like, I mean, if it stops working, then, I mean, the total
communication is broken.​

 So there's a single point of failure. And what is the communication bandwidth
requirement on the centralized server? This is N, if there are N servers, this is N times D,
right? So the communication bandwidth requirement is basically, it scales with the
number of Scales with the number of agents and number of workers, right?
Communication. Scales with the number of servers. Right, so this is not a viable
architecture, a viable setup if you have very large number of agents in the network, okay.
Because you have a huge communication required bandwidth requirement over here.​

 It would have been much ideal that if this bandwidth requirement is distributed between
the servers and not necessarily towards one particular entity, right. These are two sort of
challenges. And in order to account for, in order to sort of elevate these challenges, So
you guys know this company Baidu, right? Baidu, which is Google equivalent in China,
Baidu. No? You guys know Andrew Yang? So Andrew Yang, in fact, for a brief period he
had worked at Baidu as well. Anyway, so Baidu sort of, I mean it's the name of the
company, but they came up with this algorithm called ring all reduce algorithm ok.​

 So, a particular advantage of this particular algorithm is, so communication bandwidth
requirement is constant in the number of agents, which is a significant thing. I mean it is,
so the bandwidth requirement is going to be constant in the number of agents. So, no
matter how many agents you add in the network. it is basically that required bandwidth
requirement is going to be constant and also there is there is no centralized ok. So, this
particular algorithm has two steps just like ADMM you had seen right. So, this algorithm
also has two steps it has scatter reduce and all gather this algorithm has two steps and the
way this works is now let us say to start with Every agent let us say they have at the kth
iteration at the end of the kth iteration they have they know the current weights wk ok.
Let us say this is the case. Now let us just for example consider you have 3 agents 3
workers. So, what every agent does is? So, they divide the data set into 3 parts.​

 and let us call it A naught, B naught and C naught for the first agent. Similarly, second
agent would divide this as. So, there are n agents essentially you divide your dataset into

n points like this and then So, this is for the second agent and for the third agent. So, in
the first iteration, so let us see. So, how do the iterations of this particular algorithm
work? So, again to start with we have the current set of weights W k.​

 I mean there is an outer iteration which is basically the weights the kth iteration where
the weights of the networks are like Wk current set of weights. So idea is to be able to
sum all the entries right because that is what we want. We want like the again if I look at
here we essentially want to be able to sum these entries. So if on these Wk's I can on like
given the Wk on my data points I can compute the gradients But I need to be able to sum
this and exchange this eventually. So let's see how this works.​

 So in the first iteration, let's see the first iteration of scatter reduce. So, the first agent
relays the first block information on the first block to the second agent, second agent
relays the information of the second block to the third agent, and likewise this agent and
when it relays that information the incoming information is simply added to the previous
entry. So, what happens is after first iteration what happens? Is everyone following this?
Three different sets of data points. If there are n data points then you basically have n
different sets of data points.​

 The first block. Think of it as the first block, second block, third block. If you have n
agents then you have n blocks per agent. So if let's say you have 4 agents and you have
50 data let us say 40 data points. So, it will be blocks of 10 each. So, there will be 4 such

blocks per agent. So, A naught B naught and the third entry would be because it has an
incoming entry from C 2. So, it will be C naught plus C 2. Likewise you have a 1 plus a
naught ok, b 1 and c 1 and similarly you have a 2, b 1 plus b 2, c 2. Is this clear? They are
extending the gradients. All we are trying to get to is the sum of these gradients right.​

 Those are these gradient information right on the data points. Is this clear? So, this is
what happens after first iteration. Then you have the second iteration. So, in the second
iteration essentially you have this information, then you have, so yeah, so you will have
this information and what did I miss this one here right ok. So, basically, you have moved
everything over by one place.​

 So, it is the same operation, but we have moved everything over by one place, but what
happens after the second iteration is, let us see what are the entries that we have. We have
a naught here, we have b naught plus b1 plus b2 and we have c naught plus c2. a naught
plus a1 b1 then you have c naught plus c1 plus c2 and the final iteration we have a naught
plus a1 plus a2 for the final agent b1 plus b2 and c2. Now, if I look at the 3 agents. So,
this is just this by the way after 2 iterations right.​

 So, if I look at the 3 agents. I had the right piece of information at across different
distributed across different agents. So, let us say had this been n agents then you would
have those n correct pieces of information distributed across those n agents right. So,
since we divide the entire data into n blocks and this happens after how many iterations 2
iterations which is n minus 1 iterations. So, after n minus 1 iterations we actually have
the right set of information right distributed across this I mean we are not done yet
because if every agent I mean there is no centralized agent right so every agent if they
were to be they were to ensure that their I mean their WKs are always in sync then they
have to have the entire set of information and not just the one particular block correct
piece of information right. So that when they do wk plus 1 everyone independently does
wk plus 1 is wk minus eta times the sum of all the gradients that sum of all the gradients
should be known to every agent.​

 In this case a part of it one part of it is known one part of it is known and one part of it is
known and that information is distributed across different agents as of now. But then how
many like what is the bandwidth requirement that this is basically constant in the number
of agents. This bandwidth the communication bandwidth requirement the total cost
communication cost is going to be constant. So, this was the scatter reduce step. Let us
see what happens in the all gather step.​
 So let's say you have, like let's say if the first agent has gotten, has 40 data points, like
every agent let's say has 40 data points and there are four such agents. So a0, b0 and c0
are the gradients computed on the first 10. So let's say for the, with respect to the- If there
are four agents. If there are n agents then you have n such blocks So everyone has
information about wk. Let's say they had the information about w0 to start with, the same
w0. Now for the agents to run this. So everyone needs to know, because now there is no
centralized entity. So everyone needs to know the entire sum of, like there are 160 data
points, let's say, if there are four agents, there are 160 data points. So everyone needs to
know the gradient computed on the entire 160 data points so that everyone can run the
same equation and get to the same Wk plus one.​

 Because now there is no centralized entity that's actually helping with coordinating
between the agents, right? As to relaying what Wk is. So is this scatter reduce part clear
to everyone? So now let us move look at the all-gather step. So maybe use a new page.
Exactly after n minus 1 iterations not some amount after 2 iterations.​

 In this case there were 3 agents. So 3 minus 1 which is 2 after 2 iterations the you will
have the right set of information, so just for one particular let us say this would have been
the information about one agent right to start with this was in fact the second agent or let
us say this particular block. So this b0 plus b1 plus b2 is available, ideally I want
everyone to know what is a0 plus a1 plus a2, b0 plus b1 plus b2, c0 plus c1 plus c2. Right
now they only know a0, b1, b2, right now they know these respective blocks but one
agent at a time.​

 Then you have all gather step. and what happens in all gather. So, let us see what is the
state after the scatter reduce step. So, let me sort of redraw it a naught c naught plus c 2.
So, this is the information the current state of information after the scatter reduce step.
Now, in all gather steps so unlike in scatter reduce step when the incoming information is
simply added.​

 In this case the incoming information is just going to be I mean basically you are going
to sort of rewrite your current information with the incoming information. So, what
happens is this information is relayed let us say here in the first iteration, this
information is relayed here and this information is relayed here. So, this is the first

iteration of let me here let me do it over here I think this is. we want this to be rewritten
by the incoming information, we want this block to be rewritten by the incoming
information and likewise this to be rewritten by the incoming information.​

 This is the first iteration of all gather. So, we are now just gathering the information. So,
after this, after this particular step what happens? because we want the current
information to be sort of written right. So, now what would happen after this let us see I
mean I think you will get a better sense once you. So, after this first round what happens?
For the first agent you have a naught plus a 1 plus a 2 in place you have b naught plus b 1
plus b 2 in place and c naught plus c 2 still needs to be updated. Likewise, for the second
agent you have a naught plus a1 here, the second in a naught plus b1 plus b2 and you
anyway have c naught plus c1 plus c2 and for the third agent you have A naught plus a1
plus a2, b1 plus b2 and then you have c naught plus c1 plus c2.​

 So every agent has gotten two blocks of correct information right after this first round.
Then you have the second iteration and in the second iteration what needs to be done? So
this needs to go here, this needs to go here and this needs to go here. After this round
every agent has gotten the same amount of exact same piece of information. So how
many iterations did it take? N minus one iterations here as well. So in total you have two

times N minus one iterations times K by N which is still constant in the number of agents.​

 So this is the total amount of information exchanged and this is independent of the
number of agents. So the communication bandwidth requirement with this ring all reduce
algorithm, it's actually independent of the number of agents and it doesn't have a
centralized entity either. So, these are certain examples of I mean something I would not
still call it distributed optimization or decentralized optimization because you assume that
every agent starts with the same initial condition wk or w0. So there is this difference
here and in the next lecture we are going to look at something called decentralized SGD
which is essentially very similar to the distributed optimization algorithm or the DGD
algorithm that we looked at in the previous lecture. So this algorithm is still not fully
decentralized because we assume that to start with every agent has the same W0 right and
that is usually not the case.​

 So in order to ensure that as well you would need a consensus kind of step on top of the
gradient descent step. So is this clear? N minus 1 right, for both of them it will be n
minus 1, so it will be Then followed by? Yeah, so no wait, so you have an outer iteration
which is like the kth iteration of the updating the weights. So let's say after the end of k
iterations you have the current set of weights wk. Right now your focus is just to be able
to compute this sum.​

 That is what you are trying to get at. You are trying to compute this particular sum and in
order to compute that sum you run one round of scatter, basically ring all reduce
algorithm. So if there are n agents, so there will be n-1 iterations of scatter reduce and n-1
iterations of all gather. and after that you would be able to compute that sum every agent
would be able to compute that sum independently and then they would be able to update
the weights independently, but it will be the same weights wk. So, this would basically
conclude the k plus 1th iteration of the wk plus 1 algorithm. So, now if you look at it
while you have I mean this algorithm is attractive in the sense that the communication
bandwidth requirement is much smaller.​

 The time it takes to train neural network because you have multiple iterations of ring all
reduce involved, right? Compared to this parameter server approach, they're definitely
larger, right? You have two times and n minus one iterations. which is not the case over
here. So that is one difference. I mean one particular advantage of parameter server
approach but then again in parameter server, I mean there are other disadvantages like
you assume a huge communication bandwidth requirement for the centralized server,
right? So that is completely sort of elevated here.​

 You can, yeah, I mean you can start with... Yeah, so in this case, I mean, the reason we

do that is because, I mean, you know that this is the correct piece of block and you don't
want this to be written, right? So it really, I mean, it really sort of depends on how you, I
mean, how you have set it up. So the point is how, I mean, as long as you start correctly,
you just have to move over by one place and you can keep doing this in a round robin
fashion. If there are four agents, then you have to do it like three iterations and you have
to do it in a round-robin fashion. Yeah, as long as the start is correct you just keep
shifting by one unit to the left same with the scattering like scatter reduce you have
started here you then shifted by one unit to the left ok. So, is this algorithm clear? So I
will conclude today's lecture with the result on gradient descent in general or stochastic
gradient descent and this would be useful in the next lecture when we are going to look at
something called decentralized SGT.​

 So far we have been in the context of developing algorithms we have been looking at
ways we have like particularly in the context of distributed optimization. So what did we
look at? We looked at algorithms which are first-order versus second-order. We looked at
maybe a fixed-time variant of it. So there are these ways to accelerate the optimization
process. But one thing which we haven't looked at so far is the role of the topology.​

 So, first of all we know that the graph diameter is going to play an important role
because it tells you how quickly you are going to reach the consensus. So, the role of the
topology is also important in terms of dictating how quickly you can converge. So, if we
were to choose the underlying graph topology. what is an optimal choice of graph
topology. So it is certainly not a line graph because it takes a lot of I mean if the graph
diameter is going to be d n minus 1 and it would take that much amount of steps for the
information to propagate from one end to another.​

 It cannot be star graph because star graph while the step propagation information
propagation happens in two steps from any node to any other node. the communication
bandwidth requirement on the star node, that is going to be significantly large. It's N
minus one. So if you want to have a nice trade-off between communication requirement
as well as how quickly the information flow should happen from one node to another, So
if you want to have this nice trade-off, what is the optimal topology to work with? While
this still remains an open question, but there exists a topology that beats all common
topologies that we know and that is called static exponential graphs. So this is something
that we are going to look at in the subsequent lectures, but I will end today's lecture with
the simple result on gradient descent or stochastic gradient descent.​

 So under the assumption that the loss function using capital F here is L-smooth in terms
of the in terms of w and the second assumption is because we are talking about stochastic
gradient descent. So, the stochastic gradient. So, when we use a few data points to get an

estimate of the gradient we call it a stochastic gradient right because it is not a true
estimate of the gradient it is just a so is unbiased. it is an unbiased estimate and has
bounded variance. So, you choose a different set of points you will get one variance right
like of the gradient you choose another set of points you will get another variance and so
on.​

 So, this has bounded variance sigma square. So, what do we mean by unbiased estimate?
So, unbiased estimator is like let us say if I am computing. if I want to compute the
expectation of the gradient, expectation with respect to how the data points are distributed
or not distributed, but let us say data points that are sampled. So, I mean this is still
talking about centralized case. So, this is same as the gradient of So, then we say it is an
unbiased estimator. So, the result says then if these two assumptions are satisfied then and
if you use a step size of the order let us say 1 over square root of T then you have 1 over
T summation is running some of the running average of the gradient knobs.​

 So, that is going to be order sigma over square root of T. So, as t becomes larger and
larger eventually you mean you have order 1 over square root of T kind of convergence,
but it also depends on the variance data variance. So, in the number of iterations it is
going to require if the variance is large then obviously you are going to require larger and
larger number of iterations. So, this is by the way what is this little f is this particular
quantity. So this is your f, the average of this is your f. So this is the result on stochastic
gradient descent and in the next lecture we are going to look at decentralized gradient
descent or decentralized stochastic gradient descent where results like these would be
useful in at least I mean we are not going to look at the proof of why static exponential
graphs are better or the worse, but then we are going to make use of these results. to
basically analyze these algorithms.

So, any questions on today's lecture? So, when does stochastic gradient descent works?
So, we assume that the loss function is L-smooth. I mean first of all when we talk about
gradient descent or any algorithm for that matter, a either if you want to provide global
guarantees and you would have to assume that the function is convex. if the function is
non-convex then the guarantees are only going to be local. So, there are no guarantees of
convergence to global minima.​

 So, I have not mentioned that f is convex or not convex. So, I mean even if it is
non-convex the convergence guarantee that we are going to have is essentially local
convergence guarantee. So, we assume that the loss function is L-smooth in terms of the
weights w. Like let's say you choose a mean square loss or cross entropy loss. So
whatever loss you end up choosing, it's going to be L-smooth in the weights of the neural
network.​

 The other result is stochastic gradient is unbiased. So this is your stochastic gradient and
it's an unbiased estimator. So I can, expected value of the gradient you can write it in
terms of the gradient of the expected value and the expected value of the function is what
I call as little f. So if the stochastic gradient is unbiased and the variance is bounded by
some sigma square, then this is the convergence kind of rate that we get. And as number
of iterations capital T becomes very large. that is when you have I mean this expectation
basically starts the average of this expectation starts becoming almost close to 0, but it
scales it also scales with the number with the variance or with the standard deviation
right.​

 So, the variance is very large I mean it can still be bounded, but if it is very large then it
would also require larger number of iterations. So, these are the number of like I mean
this is the So, when what do we mean by number of iterations required? So, essentially
when if you want to say the number of I mean if you want to get epsilon close then
number of iterations required are essentially sigma over square root of t is essentially
going to be your epsilon right. This is for a centralized case. This is for a centralized case.​

 There is no distributed or decentralized part as yet. In the next lecture we will look at the
how the role of the topology plays a role I mean the topology plays a role or In fact, the
graph diameters and certain parameters would also be important in that case. So, that is
what we are going to look at. So, much of today's lecture was largely about large scale
machine learning and this basically gives you an idea. I mean that is where these
stochastic gradient descent are mostly used. So the algorithms, the parameter server
approach or the ring all reduce, they are relevant mostly in the context of large-scale
machine learning.​

 If you have very few parameters then you won't even need this kind of fancy information
exchange and if you have like multiple servers and certain bandwidth requirement on
those. But then this stochastic gradient descent is true for any setup. I mean right now we
are not looking at particularly a decentralized setup in this case. and that would be the
topic for the next subsequent lectures.

