
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-9

Lecture 30: Consensus Algorithms

So, in the last lecture we looked at average consensus and consensus algorithms right.
And one of the things that we saw was the role of the topology or the structure of the
underlying network. that plays an important role right. So, when we ran the discretized
consensus algorithm for one particular choice of A matrix, it had a consensus, but it did
not converge to the average consensus value right. And for the other choice of A, it
converged to the average consensus value. So, and the conditions that we derived was, so
when do we guarantee average consensus? So, what are the sufficient conditions? When
do we guarantee average consensus? So, A is row stochastic ok, which implies that
lambda is equal to 1 is an eigenvalue ok.

Then we want underlying graph to be connected is connected which implies what is the
simpler? Lambda is equal to 1 is a simple eigenvalue right ok. And A is symmetric which
implies average consensus. So, with just these two you guarantee consensus, but if you
have a to b symmetric that means a is also doubly stochastic both row stochastic as well
as column stochastic then you can guarantee average consensus ok. So, how do we
construct such a? So, one particular approach is using something called sinc on Does
anyone know what Sinkhorn Knopp's algorithm is? So, let us say you are given a matrix
A, a non-negative matrix A.

So, what do we mean by that? There will be bunch some 0s and some non some positive
values ok. So, it is a non negative matrix, it is a square matrix ok. Now, what Sinkhorn
Knopp's algorithm does is, so in the first iteration you are going to do row normalization
or rather that is normalization by row sum. So that means, you are going to get these row
sums, let us say this is this gives you r1, this gives you r2, r3 and so on. And then you



construct a new way, let us call it a plus, which is going to be this divided by r1, 0, r1 and
so on.

Likewise, this entry divided by So, you are going to do a simple row sum normalization
of every row. So, that it becomes row stochastic. So, that is step 1. Step 2 is column
normalization or column sum normalization by column sum. So this A plus matrix that
you have now obtained, so you are going to be obtaining column sums of this particular
matrix and then you are going let us say these column sums are C1, C2, C3 and so on.

So you are going to be constructing a new matrix A plus plus which is just going to be A
plus divided by this column sum C1, C2. So, the respective columns are going to be
divided by these column sums. So, now it becomes column stochastic, but then it need
not be row stochastic anymore right because now you have divided this by column sums.
So, it need not be row stochastic, but it turns out that if you keep repeating this process.
So, rows make it row stochastic followed by column stochastic, row stochastic, column
stochastic.



If you keep repeating this multiple times for a non negative matrix, it will eventually
converge to a doubly stochastic matrix. So, this is what Sinkhorn Knopp's algorithm is.
So, we repeat the steps 1 and 2 until convergence and this basically gives you doubly
stochastic matrix. So, this is one particular way to obtain W stochastic matrix and this is
often used let us say when we talk about. So, in the context of machine learning I mean
this is aside from the course let us say I am trying to, so everyone knows what travelling
salesman problem is.

So, travelling salesman problem is let us say you have these nodes that need to be visited
by a salesman or a postman let us say. and in such a manner so that the total distance. So,
every node is visited just once and the total length of travel is minimized. So, and then
wherever the salesman starts basically he or she needs to I mean end their trajectory at the
same point. So, for instance let us say this is the this turns out to be the optimal sort of
route which minimizes the total travel distance.

So, in general it is an NP-hard problem right and if you look at, but then if I try to look at
this solution to this particular thing, what does this turn out? Let us say this is city 1, 2, 3,
4, 5, 6. So, from 1 I need to go to 2, let us call it 7. So, from 1 I need to go to and from 5
I need to go to 1 right. So, you can see that this matrix is a special class of doubly
stochastic matrix with exactly one entry being positive and every other entry being 0
right. So, if you know what softmax is in context of neural network, if I have a doubly
stochastic matrix as a softmax kind of matrix and I just keep doing repeated sink on
knobs algorithm on top of it, then you would hope that eventually this converges to my 1
0 kind of matrix that I want and this would be one way to generate solution to a graph
structured travelling salesman kind of problem.

So, this Sinkhorn Knopp's algorithm is often used when you want to when your decision
space is a stochastic or row stochastic matrix or a doubly stochastic matrix. So, Sinkhorn
Knopp's algorithm is often used on these logits or the softmax scores. So, that is just an
aside thing, but this is where you can see the role of doubly stochastic matrix coming. But
what is the shortcoming of this like let us say if I want to use Sinkhorn Knopp's for



generating a doubly stochastic matrix. What is the shortcoming of this approach? Small
what? That is fine I mean how does it matter because everything is going to be row and
column not like everything is going to be row stochastic and doubly stochastic.

So, even. So, usually in practice I mean you mean the this particular thing is half. So,
this is usually like 6, 7 iterations are enough. So, it is not really about that. So, not so
much on the entries, but number of non-zero entries and zero entries is what it would not
depend on, but that aside what is a bigger sort of difficulty in working let's say you are
trying I mean there are multiple agents in the network and they are trying to I mean your
goal is to be able to arrive at let's say as a centralized I mean you there is no centralized
entity so you do not know anything about the topology you know what how your
neighbors are right you know know you know about your connectivity and maybe to
some extent you can talk to your neighbors and figure out their connectivity but you do
not know the connectivity of the entire graph right So, for doing this row normalization
and column normalization, I would actually need to know that. In order to compute the
row sum, I need to know how my neighbors are also connected to other agents and so on
and likewise column sums and so on.

So, I would need to know the entire topology and that means I assume that there is a
centralized entity which has access to all the information and that is something that
anyway we want to get away with. So, this is not a very viable approach. for constructing
an A matrix that is a row stochastic symmetric and also guarantee that guarantees that
well I mean underlying graph is connected with the property of the graph. So, we are
going to assume that the graph is connected, but this is not a very good way to generate
W stochastic matrix. So, in the example.

So, you can assume that if there is an edge then you place 1 otherwise 0 means you can
start with that. Yeah, graph you are going to be assuming that the graph otherwise there is
I mean you cannot reach consensus if the graph is not connected right. So, if you
remember that example of the temperature census. So, I think it was something like this
and underlying topology was something like this right. So, what kind of a did we choose
in the first case? So, it was half and half 0 0.

Now 2 is connected to every just had one fourth each 3 is connected to 2 and 4. So, 0 one
third one third one third and likewise 0. and what is it really trying to do. So, suppose I
multiply this with x 1, x 2, x 3 and x 4 and this basically gives me new x right, x i let us
say x 1 k plus 1, x 2 k plus 1 to x 4 k plus 1, this basically gives me new x i's. So,
according to this it basically tells you that x i k plus 1 is going to be an average of your
own estimate and your neighbors estimate right.



Likewise x2k plus 1 this is going to be an average of x1k. So, your own estimate and
then your neighbors estimates and you weigh all of them like in this case we have an
equal weighting for all the information that we have in the Similarly, x 3 k plus 1 is
going to be x 2 k, okay. Now if I look at this particular matrix, this is definitely row
stochastic right, but this is not column stochastic and that's why we saw that when we ran
this consensus algorithm which is xk plus 1 is a times xk, it converged to the common
consensus value, but it did not converge to the average consensus value that we wanted it
to converge to right. And for that we had a different choice of a and let me tell you I
mean let me also tell you how to construct such an A. So, we are going to be using
something called metropolis weighting scheme and it goes something like this.

So, aij is going to be 1 over 1 plus max of the degree of the ith node and the degree of
the jth node. Now, this is a local piece of information. You can talk to your neighbor, you
can ask his or her degree and that way you will be able to ascertain whichever one is the
maximum quantity. So, you do not need to know the entire topology. So, in constructing
aij, I just need to know the degree of my neighbors.



and myself right and that is it. And I would know of my degree because I know who are
my neighbors. So, I know of my degree the number of agents that I am connected with.
My neighbor would know the number of agents that he or she is connected with and this
way you can estimate this information or you can exactly obtain this particular
information max of d i comma d j without having to know the entire topology right. so in
this case agent i need not know about the entire topology of the network likewise agent j
also does or any agent for that matter it doesn't need to know the entire topology of the
network is this clear so what would be the a matrix in this case so let's first look at a 1 2
now what is the degree of the first of node 1 1, 2 is 3 and 3 and 4 are 2.

So, a 1 2 is 1 over, so max of 1 comma 3 is 3. So, 1 over 1 plus 3 which is 1 over 1
fourth and which basically gives you a 1 1 is 1 minus of this and it becomes 3 fourth.
What about a 2 1? Now, a21 again is going to be one-fourth because it is again going to
be max of 1,3. In fact, 2 has the highest degree which is 3. So, for that matter a23 is also
going to be one-fourth and a24 is also going to be one-fourth which implies a22 is going
to be 1 minus all of this which is also going to be one-fourth.

Now, we talk about a 3 1 is not going to be there because 3 is not connected to 1. So,
that is going to be 0. What about a 2 3 or a 3 2? This is going to be 1 4th. What about a 3
4? Both are degree 3, both are degree 2 each.



So, it is going to be 1 3rd. So, a 3 4 is going to be 1 3rd and therefore a 3 3 is going to
be which is 5 12 right. And likewise a 4 2 is going to be 1 4th, a 4 3 is going to be 1 3rd
and a 4 4 is going to be 5 12th. And now if I try to construct this a, this a turns out to be 3
4th one fourth 0 0. So, this is 0 0 and you have a 3 2. And in fact, this is precisely the
matrix that we had used in the second algorithm.

And you can also verify this is doubly stochastic, symmetric doubly stochastic and
therefore, you can guarantee average consensus. Is this clear? So, this is the metropolis.
In fact, this is often used in Markov chain Monte Carlo, this kind of metropolis scheme.
this is often this metropolis weighting scheme is often used and that is why the name that
is where the name comes from. But the idea is this is how you are going to be locally
constructing your matrix without having to know.

So, in just one round of communication you would be able to know the degrees of every
node like of your neighboring nodes and you would be able to construct this. Any
questions on this? So, this algorithm that you are going to be running is xk plus 1 is a
times xk and this would guarantee average consensus assuming the graph is connected
with metropolis waiting ok. I mean technically we you can do that you can apply the
same I mean in that case you have to be careful about the in degree and the out degree
rather. So, since you are going to be exchanging information with your neighbors or you
are going to be communicating with the neighbors. So, you would have to I think in that
case you would have to just focus on out degree and I think it should be fine.

The only thing is you need in that case you need the underlying graph to be strongly
connected and not just connected for you to be able to guarantee average consensus. So,
this is the discrete time consensus algorithm. So, in the rest of the lecture we are going to
sort of look since we had studied stability of dynamical system. So, we are going to look
at the standard consensus algorithm in continuous time and then we are going to look at
the fixed time variant of it. Because in consensus you, so average consensus is important



because I mean you just like let us say you are gossiping among yourself and if you
converse to some belief that you cannot track for instance, I mean then there is no point
right.

Everyone just says that I am 0, like let us say I mean you are trying to estimate the
number of M&M's inside an M&M packet. and no one knows the exact number, but
maybe you have an idea, your neighbors may have an idea and then you are trying to
converge to a useful number and that would be an average of everyone's beliefs. If you
just want to run a consensus, then you can just say that there are zero M&M candies
inside this packet and if everyone does so, you are at a consensus value, but it's of no use.
Yeah, so I mean in fact we will come to that. So, when you mix this average consensus
scheme with another scheme which let us say you are trying to optimize a function and
you are trying to track the optimizer of it, then I mean it is not just the average consensus
part that is important and in fact you would see that this average would also move in
some sense.

So, the quantity that remains that should ideally remain invariant is the summation of x
i's. and that that you want to be I mean that you want this. So, you want that to kind of
remain invariant and that is what we are going to look at. So, we are going to look at
standard consensus algorithm first. So, in continuous time consensus and then we are
going to look at f .

In fact, again in continuous time. In fact, you would see that in this context, in the
context of continuous time algorithms, I mean you do not need this special structured A.
So, this would, this makes sense when you are running discrete time algorithms or
continuous time algorithms, this special type of A is not even needed. So, let us take an
example. Let us say this, consider a very simple graph like this, ok. What is the adjacency
matrix for this undirected unweighted graph? So, the a 1 1 is 0, there are no self loops.

So, 1 to 2 is 1 right, again you have 1s here and then you have. So, this is not a doubly
stochastic matrix right. In fact, there is I mean unlike the previous case where we wanted
a to b, I mean you can see that there are self edges right. 3 4th, 1 4th, 5 12th and 5 12th
then no self edges here. Certainly we are not going to run the dynamics x dot is some a x.

So, this is this is not some this is not the conscious algorithm that we are going to be
running. So, instead ok. So, let us let us also look at these quantities as well. So, what is
the degree matrix and this? So, 1 2 1 ok. And let us also look at the Laplacian which is d
minus a and it is going to be 1, minus 1, 0, minus 1, 2, minus 1 and then you have 0,
minus 1, 1 this is the Laplacian.



And what is one property of Laplacian? symmetric is 1 and then Laplacian times a vector
of 1 is, so 0 is a, like if the graph is connected then 0 is a simple eigenvalue of the
Laplacian. So, if I multiply this with vector of 1, this is going to give me 0s. So, let us
also do one thing, let us multiply this Laplacian with this quantity x1, x2, x3 and let us
see the output. So, the first entry is x1 minus x2, second entry is 2 x2 minus x1 minus x3,
the third entry is x3 minus x2 ok. Which is another and another way to write this is x1
minus x2, this is x2 minus x1 plus x2 minus x3 and this is x3 minus x2.

So that means agent, so if I multiply any vector x, so this is my vector x. So I multiply
this vector x with this Laplacian. What is it really doing? Basically agent i is basically
subtracting agent j's belief from its own belief. And in case they have multiple neighbors,
they are going to be getting the relative belief and just adding those up. So this
computation, if I do, if I say l times x, if I define this to be, this is one, let's say this is my
computation.

This computation is simply local, because I can subtract my neighbor's beliefs from my
own belief and this is what I am doing and just summing those relative quantities. So, this
computation is completely local. So, in this case, for instance, agent 1 does not need to
know about what happens with agent 3. So, these computations are local. ok and when is
this quantity 0 let's say when would this result in 0 when x1 is equal to x2 is equal to x3
all are like essentially the vector of ones right if the graph is connected it should I mean it
should be collinear with the vector of ones.

So, that means x1 is equal to x2 is equal to x3 is equal to. So, that pretty much gives you
an idea how to run a consensus algorithm and the continuous simple the standard



continuous algorithm or standard algorithm for consensus in continuous time is x dot is
simply negative of L of x. So, first of all let us look at the equilibrium of this particular
dynamical system. Yeah, so that is what we are looking at. So, what is the equilibrium of
this dynamical system? So, when x dot is equal to 0.

So, that means l of x is equal to 0. So, this implies x is basically some alpha times vector
of 1. So, this is the equilibrium. So, you know that if the trajectories are converged to the
equilibrium of this dynamical system, then the agents are going to be in consensus. We
haven't said anything about average consensus yet, but we know that the agents are going
to be in consensus. Okay, is this clear? Okay, so let's see what happens if I try to, let's say
the agents, they run this locally, right? So when I say x dot is negative of L of x,
essentially from the perspective of ith agent, it's just doing local computations.

Okay, so what is this quantity? okay which is going to be here xj right lij xj that is what
you are doing another adding the yeah if I do one transpose l what is this quantity which
is? Yeah, which is? It is 0, right? Okay. So, what is this quantity? This is nothing but 1



transpose x dot. So, 1 transpose L that is 0. Why? Because if I can just sum it over Lij,
summation i equal to 1 Lij and that is going to be 0.

Okay. So, this is going to be 0. since summation i equal 1 through n, l ij is going to be 0
for every j. One is both the left and the right, vector of 1 is both the left and the right
eigenvector for this Laplacian. So, 1 transpose l is a 0, is going to give you 0 vector. So,
that means this particular quantity is equal to 0. So, therefore, summation i equal 1
through n x i t is going to be constant because the time derivative of this is 0 which
means this is equal to summation i equal 1 through n x i 0.

So, the summation is going to be constant. always if you run the standard consensus
algorithm, the summation of x is always going to be constant. And now if everyone
converges to the same value, let us say everyone converges to the same value, which is
going to be n times x star because everyone converges to the same value. So, then the
consensus value turns out to be x star is 1 over n summation i equal 1 to n x i 0, which
implies average consensus. ok ok so why did we use x dot as negative l x and not positive
l x it would have been the same thing right yeah so why because l is supposed to be
positive semi definite matrix right so if i look at the solution to this x t x t is matrix
exponentially to the negative l t times x naught right and l is l we know is positive semi
definite matrix with 0 being a simple eigenvalue simple and eigenvalue if graph is
connected ok. So, this basically tells you that you want this dynamics to be stable and
because l all the eigenvalues of l are greater than equal to 0.



So, you want this dynamics to be stable and that is why we work the standard consensus
algorithm is x dot is negative of l of x l times x. Even though we write this in a vectorized
form from the perspective of individual agent i. So, agent i is simply running. This is
what agent i is running.

So, these computations are local computations. even though it may look like the x dot, I
am writing this in a nice vector form, but then agent i is basically running this particular
dynamics. And if I try to combine everyone else's dynamics, so you get this x dot is
negative of L x. A respective of the matrix A.

A respective of the matrix A. So, as long as the graph is connected. So, this would
happen for any matrix. Thank you very much.


