
 Distributed Optimization and Machine Learning 

 Prof. Mayank Baranwal 

 Computer Science & Engineering, Electrical Engineering, Mathematics 

 Indian Institute of Technology Bombay 

 Week-8 

 Lecture 29: 	Consensus	and	Average	Consensus-2	

 So,  for  any  row  stochastic  matrix.  max  eigenvalue  is  1  and  if  the  graph  is  and  if  the 
 underlying  graph  is  strongly  connected,  strongly  connected  then  1  is  also  a  simple 
 eigenvalue.  So  in  order  to  look  at  this,  so  let  us  look  at,  so  fact  1  was  every,  so  we  were 
 using  this  particular,  it  was  here.  A  real  symmetric  matrix  has  real  eigenvalues  and  it  is 
 also  diagonalizable.  Let  us  look  at  fact  2.  So  something  that  we  have  already  looked  at 
 which is a row stochastic matrix has an eigenvalue which is 1 right, so 1 is an eigenvalue. 

 So,  everyone  with  me  on  this?  So,  A  times  vector  of  1  is  simply  1.  So,  1  is  one  of  the 
 eigenvalues  of  a  row  stochastic  matrix.  Fact  number  3,  no  so  which  is  basically  related  to 
 the  point  that  we  just  above  mentioned  just  above.  So,  the  no  other  eigenvalue  is  more 
 than 1 for  the row stochastic matrix. 

 So,  how  do  we  show  this?  So,  let  us  say  there  exists  a  lambda  greater  than  1.  So,  we  are 
 going  to  show  this  by  contradiction,  there  exists  lambda  greater  than  1  which  is  also  the 
 eigenvalue  of  this  of  a  row  stochastic  matrix  right.  matrix  A  with  let  us  say  eigenvalue  v 
 eigenvector  v  with  v  being  the  eigenvector.  So,  A  times  v  it  is  going  it  is  first  of  all  it  is 
 going  to  be  lambda  times  v  and  let  us  say  i  being  the  So,  choose  a  max  largest  entry  of 
 your eigenvector ok. So, if I do A times v I am going to get. 

 So,  basically  the  effect  of  this  A  times  v  would  be  lambda  times  v.  So,  that  means  for 
 that  particular  ith  entry  I  am  going  to  be  getting  what?  So,  lambda  times  vi  for  that  ith 
 entry  ok  which  is  going  to  be  greater  than  vi  because  lambda  is  more  than  1,  but  at  the 
 same  time  what  do  the  entries  of  A  look  like?  It  is  essentially  convex  combinations  of 



 different  v's  right  like  it  is  essentially  like  if  I  do  A  times  v  it  is  essentially  doing  convex 
 combinations  of  different  v's  if  every  row  of  A  and  that  means  every  element  is  going  to 
 be  smaller  than  the,  so  this  A  times  v  the  ith  element  of  this  is  going  to  be  less  than  equal 
 to  vi.  right.  So,  from  one  end  we  are  getting  it  strictly  greater  than  v  i,  from  other  end  we 
 are  saying  it  is  less  than  equal  to  v  i.  So,  which  is  a  contradiction  and  therefore,  you 
 cannot have an eigenvalue more than. 

 So,  this  is  a  contradiction  and  therefore,  you  cannot  have  an  eigenvalue  which  is  more 
 than  1  for  a  row  stochastic  matrix  ok.  So,  that  is  the  fact  that  is  fact  number  3.  And  the 
 fact  number  4  is  if  the  underlying  graph  is  strongly  connected,  then  1  is  also  a  simple 
 eigenvalue.  and  the  proof  is  of  this  is  going  to  be  very  similar  to  how  we  looked  at  the 
 proof  for  the  Laplacians  for  the  number  of  connected  components  right.  So,  if  the  graph 
 is  connected  then  1  is  the  simple  eigenvalue  that  means  algebraic  multiplicity  of  1  is  also 
 is same as geometric multiplicity of this 1 eigenvalue which is going to be 1 ok. 

 So,  with  all  the  sort  of  key  ingredients  So,  I  am  going  to  list  out  this  theorem  I  mean  you 
 can  I  will  maybe  share  post  a  proof  on  teams,  but  we  will  probably  not  have  proof  in  this 
 class.  But  then  this  would  be  this  using  this  particular  result  we  are  then  going  to 
 conclude  that  for  rows  stochastic  matrix  which  are  also  symmetric  in  that  case  you  are 
 going  to  be  arriving  at  average  consensus  and  not  just  the  consensus.  be  a  non-negative. 
 So,  let  A  be  a  non-negative  matrix  with  dominant  eigenvalue  lambda  and  the  right  and 
 left  eigenvectors  are  v  and  w  such  that  v  transpose  w  is  1.  If  lambda  is  simple  and  strictly 
 larger in magnitude than all other eigenvalues, then we have limit k going to infinity ok. 

 So,  let  us  revisit  this  statement.  So,  what  this  says  is  that  let  A  be  an  A  be  a  square  matrix 
 which  is  a  non-negative  matrix.  So,  that  means  every  entry  is  greater  than  equal  to  0  and 
 the  dominant  eigenvalue  of  this  matrix  is  lambda.  for  that  eigenvalue  lambda  the  right 
 and  the  left  eigenvectors  are  v  and  w  ok.  So,  what  do  you  mean  by  right  eigenvector?  So, 
 a A times v is lambda v. 

 So,  that  is  a  right  eigenvector  w  transpose  A  is  equal  to  lambda  w  transpose  that  is 
 basically  your  left  eigenvector  ok.  So,  the  right  eigen  right  and  the  left  eigenvectors  are  v 
 and  w  for  corresponding  to  this  lambda  and  we  also  normalize  these  eigenvectors.  So, 
 that  v  transpose  w  is  equal  to  1.  So,  if  lambda  is  simple  ok  and  strictly  larger  in 
 magnitude than all other eigenvalues, then limit of this is essentially vw transpose ok. 

 So, let us look at the consequence of this in the context of consensus problems. 



 So,  application  of  our  theorem  in  the  context  of  the  average  consensus.  So,  first  of  all 
 we  are  going  to  be  working  with  matrices  which  are  row  stochastic  right.  So,  A  is  row 
 stochastic. So, what is the dominant eigenvalue? 1 right. So, is rows A is row stochastic. 

 So,  lambda  is  equal  to  1  and  what  is  the  right  and  the  left  eigenvectors?  So,  v  is  going  to 
 be  let  us  say  vector  of  all  ones.  The  next  thing  that  we  introduce  is  lambda  being  simple 
 right.  So,  if  the  underlying  graph  is  connected  So,  then  lambda  is  simple.  So,  if  and  that 
 also  makes  sense  if  the  graph  is  connected  that  means,  then  we  would  be  able  to 
 exchange  in  like  any  node  will  be  able  to  exchange  information  with  any  other  node  and 
 that  is  when  we  can  talk  about  nodes  arriving  at  consensus  right.  So,  if  the  underlying 
 graph is connected graph is connected. 

 this  implies  lambda  equal  to  1  is  simple  ok.  So,  on  top  of  this  if  A  is  symmetric  which 
 means  it  is  also  column  stochastic  ok,  then  what  is  a  left  eigenvector?  It  will  be  a  vector 
 of  all  ones  divided  by  n,  divided  by  n  because  we  want  to  make  sure  that  v  transpose  w  is 
 equal  to  1.  right.  So,  ok.  Is  this  clear?  So,  now  if  A  is  row  stochastic  and  symmetric 
 which  makes  A  to  be  column  stochastic,  we  assume  that  the  underlying  graph  is 
 connected. 

 So,  therefore,  this  lambda  equal  to  1  is  simple  and  because  A  is  row  stochastic  lambda  is 
 equal  to  1  is  also  dominant.  So,  all  the  conditions  of  this  particular  theorem  are  being 
 satisfied  and  therefore,  limit  k  goes  to  infinity  A  to  the  k  I  mean  lambda  is  equal  to  1 
 right.  So,  this  implies  as  a  consequence  of  this  particular  theorem  limit  k  going  to  infinity 
 A  to  the  k  essentially  is  equal  to  v  w  transpose  which  is  1  1  transpose  divided  by  n  ok. 
 And  if  I  look  at  the  consensus  algorithm  which  looks  something  like  this  x  k  plus  1  is  a  to 
 the  k  plus  1  x  naught.  So,  limit  k  goes  to  infinity  x  k  plus  1  is  essentially  limit  k  goes  to 
 infinity A to the k which is 1 1 transpose over n. 

 So,  this  is  equal  to  1  1  transpose  x  naught  over  n  right  and  this  means  that  every  agent 
 arrives  at  the.  So,  1  over  n  summation  i  equal  1  through  n  x  i  0  right  ok.  So,  1  transpose  x 
 A  x  naught  is  basically  the  summation  of  all  the  and  then  it  is  the  same  vector  that  is 



 getting  repeated  and  then  you  divide  it  by  n.  So,  that  means  you  arrive  at  the  average 
 consensus.  So,  a  sufficient  condition  for  average  consensus  is,  the  row  stochastic,  A  is 
 symmetric,  underlying graph is connected. 

 So,  if  all  these  three  are  satisfied,  then  you  can  guarantee  that  the  nodes  they  reach 
 average.  Is  this  clear?  And  that  is  why  now  if  I  If  you  look  at  if  you  consider  the 
 previous  example  that  we  looked  at  in  the  second  case  when  A  2  or  the  in  the  second 
 algorithm  when  A  was  doubly  stochastic  or  I  mean  both  row  stochastic  as  well  as 
 symmetric  then  we  saw  that  the  agents  or  the  sensors  values  they  reached  like  all  of  them 
 they  converge  to  this  number  24  right.  So,  this  is  just  a  sufficient  condition.  it  may 
 happen  that  with  just  with  a  non-symmetric  A  which  is  just  host  stochastic  in  certain 
 cases  you  may  get  average  consensus,  but  this  is  as  I  said  this  is  not  necessary  this  is  just 
 sufficient  condition  ok.  So,  if  I  consider  two  different  types  of  graphs,  so  something  like 
 let  us  say  a  line  graph  or  you  have  a  complete  graph  right  from  which  let  us  say  there  are 
 5 nodes. 

 So,  in  a  complete  graph  every  node  is  connected  to  every  other  node  and  so  on  ok.  So, 
 how  many  nodes  like  let  us  say  if  you  have  n  nodes  here,  how  many  edges  are  here? 
 edges  is  n  minus  1  and  diameter,  diameter  is  also  n  minus  1  right.  So,  you  would  need 
 what  about  number  of  edges  here  and  yeah  n  choose  2  and  the  diameter  just  one  right 
 because  in  one  step  you  would  be  able  to  reach  any  other  node.  So,  the  diameter  is  just 
 one.  So,  which  is  preferred  a  line  graph  or  a  complete  graph?  In  general  let  us  say  you 
 want to run a decentralized distributed algorithm which. 

 So,  first  of  all  which  one  do  you  think  would  it  is  easier  to  arrive  at  consensus  or  it  is 
 faster  to  arrive  at  consensus?  Faster  right.  So,  consensus  is  faster  here.  right.  But  then 
 what  is  the  shortcoming  of?  Yeah,  so  communication  I  mean  you  have  a  high 
 communication  bandwidth  requirement  for  every  node  right.  So,  that  is  also  not 
 preferred. 

 So,  consensus  I  mean  it  is  a  plus,  but  then  it  is  not  so  good  in  when  it  comes  to 



 communication bandwidth requirement right? Okay. 

 Okay.  Yeah.  Which  one?  From.  Yeah.  So,  again  the  topology  plays  a  key  role  I  mean 
 obviously,  you  can  in  one  case  you  can  arrive  at  the  let  us  say  I  mean  it  right  now  we  are 
 just  talking  about  consensus,  but  when  we  are  talking  about  solving  a  distributed 
 optimization  problem.  In  one  case  it  is  because  the  consensus  happens  faster  it  is  also 
 possible  to  arrive  at  the  optimal  solution  for  the  common  goal  faster,  but  then  it  comes  at 
 the  cost  of  requiring  high  communication  bandwidth  right.  So,  every  node  is  going  to  be 
 communicating  with  n  minus  1  nodes  in  this  in  this  case,  whereas  here  every  node  is 
 communicating  with  just  2  nodes  at  best.  So,  this  I  mean  so  in  terms  of  communication 
 line graph essentially has a very low communication bandwidth requirement right. 

 So  it  is  basically  somewhere  midway  is  what  I  mean  what  an  ideal  topology  would  look 
 like  and  if  you  and  in  that  case  that  is  something  called  static  and  we  will  come  to  this 
 later  maybe  towards  the  last  set  of  lectures  is  something  called  static  exponential  graphs 
 which  in  some  sense  basically  achieve  the  sweet  spot  between  the  communication 
 bandwidth  requirement  as  well  as  the  like  basically  also  trying  to  minimize  the  diameter. 
 So,  what  static  exponential  graph  is  that  every  node  is  let  us  say  the  node  1  it  is  going  to 
 be  connected  to  its  second  node,  then  2  to  the  which  is  the  fourth  node,  then  the  eighth 
 node  and  so  on.  So,  every  node  sort  of  in  a  modular  fashion  is  going  to  be  connected  to 
 its  immediate,  then  2  to  the  1  which  is  second  node,  then  2  to  the  2  which  is  fourth  node, 
 2  to  the  3  which  is  eighth  node.  And  that's  how  you  in  fact  it's  a  directed  graph  and  you 
 can  show  in  fact  there  is  very  recent  paper  it  showed  that  this  is  kind  of  is  better  than  any 
 known  topologies  whether  it  complete  graph  line  graph  is  also  something  called  ring 
 graph  which  is  essentially  an  extension  of  line  graph,  but  it  just  by  closing  the  ring  it 
 reduces  the  diameter  by  half  right.  because  now  the  information  earlier  it  was  n  minus  1, 
 now it will be n minus 1 over 2 or n by 2 depending on. 

 So,  this  is  so,  the  diameter  becomes  half  whereas,  the  communication  bandwidth 
 requirement  is  pretty  much  the  same  except  for  the  two  end  nodes  which  were  earlier 
 exchanging  information  with  just  one  neighbor.  Now,  they  are  going  to  be  everyone  is 
 going  to  be  exchanging  information  with  just  two  neighbors,  but  the  diameter  kind  of 
 becomes  half  of  the  original  one  right.  nearly  half  of  ok.  So,  the  role  of  the  topology  is 
 going  to  play  a  key  I  mean  the  topology  is  going  to  play  a  very  key  role  and  as  I  said  in 
 the  previous  lecture  that  related  to  topology  or  the  graph  diameter  is  your  Fiedler  value 
 and  you  would  see  that  the  algorithms  that  we  are  going  to  be  deriving  the  rate  basically 
 the  rate  of  convergence  that  is  going  to  be  dependent  on  the  Fiedler  value  of  the 



 underlying  network.  So,  smaller  diameter  means  larger  Fiedler  value  and  smaller 
 diameter means you can arrive at consensus faster. 

 So,  they  are  going  to  be  proportional  to  the  Fiedler  value  ok.  So,  before  we  arrive  like 
 before  we  start  discussing  the  algorithm,  I  just  wanted  to  briefly  discuss  two  key  results 
 that  we  would  eventually  use  in  the  subsequent  lectures  some  important  results  on.  So,  let 
 us  say  if  I  have  something  like  this,  so  then  there  are  n  n  agents  in  the  network  and  we 
 assume  that  it  is  an  undirected  unweighted  graph.  So,  aijs  are  going  to  be  1  if  there  is  an 
 edge and 0 else. 

 The  sign  is  a  signum  function  ok.  So  sign  of  xi  minus  xj,  so  that  is  going  to  be,  I  mean 
 you  can  also  imagine  these  to  be  vector-valued  functions.  So  xi  can,  so  every  agent  need 
 not  just  have  a  scalar  quantity,  every  agent  can  have  a  vector-valued  quantity,  right.  So 
 then  you  basically  evaluate  this  component-wise.  So  the  idea  is  if  you  have  an  odd 
 function  like  this,  like  a  signum  function  here,  then  So,  the  summation  of  something  like 
 this is going to be. So, it could have been f of x i minus x j where f is an odd function. 

 So,  as  long  as  you  have  that  odd  function  this  is  going  to  be  0.  So,  quick  proof  of  this. 
 Component  wise.  So  let  us  say  T  is  this  is  what  we  are  trying  to  evaluate  ok.  So  by 
 definition,  this  is  nothing  but  j  from  1  through  n  aij  by  the  way  this  is  true  for  undirected 
 ok. 

 So,  is  this  clear?  So,  instead  of  writing  j  over  the  neighborhood  set  I  basically  iterate  j 
 from  1  through  n,  but  I  use  aij  ok.  And  since  i  and  j  are  dummy  indices  I  can  write  this  as 
 j  1  through  a  j  i  and  these  are  undirected  unweighted  graph.  So,  a  i  j  is  same  as  a  j  i  both 
 are  equal  to  1  and  sin  of  x  j  minus  x  i  is  minus  of  sin  of  x  i  minus  x  j.  So,  this  becomes  a  1 
 through  which  is  minus  T  right.  So,  this  implies  that  T  is  equal  to  0  or  essentially  what  we 
 wanted ok. 

 So,  we  use  sign  because  eventually,  the  optimization  algorithm  that  we  are  going  to  be 
 using  it  is  going  to  be  a  signed  gradient  flow.  So,  that  is  why  I  am  using  sign  here,  but  as  I 
 said  this  would  hold  true  for  any  odd  function.  The  only  property  of  signum  that  we  use 
 here  was  I  mean  it  is  essentially  an  odd  function.  So,  any  odd  function  and  this  would 



 have still worked. 

 It  can  also  be  a  vector-valued  odd  function.  In  that  case,  we  would  assume  it  basically 
 applies  component  wise  ok.  So,  that  is  what  that  is  one  result.  Another  result  that  we 
 wanted  to  arrive  at  was  1  through  n.  So,  the  another  result  that  we  want  to  derive  and 
 again  this  is  the  result  that  we  would  be  eventually  using  later.  So,  that  is  why  I  am 
 deriving  it  right  now  is  this  particular  term  which  is  nothing  but  saying  that  summation  i 
 1  through  n  summation  j  in  the  neighborhood  set  of  i  e  i  transpose  w  x  i  j  this  is  equal  to 
 this particular term ok. 

 So,  e  i  x  i  j  is  essentially  the  difference  between  x  i  and  x  j  and  I  am  just  denoting  this  by 
 x  i  j.  So,  in  the  previous  example,  in  the  previous  result,  this  is  x  i  j,  x  i  minus  x  j.  And  let 
 us  say  node  i  also  has  another  vector  e  i,  another  piece  of  information  e  i.  So,  this  is 
 nothing  but  this  particular  term  if  w  is  an  odd  function.  So,  let  us  quickly  Take  a  look  at 
 the proof  So, since w is an odd function xij is xi minus xj. 



 So,  this  becomes  xj,  if  I  write  it  in  terms  of  xji,  then  it  basically  aij  ei  transpose  w  xji  and 
 again  since  i  and  j  are  dummy  indices,  I  can  write  this  as  ij  1  through  a  j  i  e  j  transpose  w 
 x  i  j.  And  a  j  i  is  same  as  a  i  j  because  it  is  an  undirected  unweighted  graph.  So,  therefore, 
 this is a i j e j transpose w x i j. 

 ok  and  this  pretty  much.  So,  this  is  2  times  of.  So,  what  do  we  want  to  arrive?  Oh  right,  I 
 just  add  the  same  quantity  to  it  right.  So,  if  I  add  this  quantity  over  here.  So,  essentially 
 the  same  quantity.  So,  2  times  of  this  e  i  transpose  w  x  i  j  essentially  I  add  the  same 
 quantity  over  here  and  this  gives  me  ok,  which  is  same  as  1  through  n  a  i  j.  e  ij  transpose 
 w  x  ij  and  this  basically  gives  us  the  result  that  we  wanted  to  arrive  at  So,  basically  a  key 
 consequence  of  this  result  is,  so  this  one  is  in  terms  of  my  own  information  right,  but  then 
 I  can  sort  of  write  it  in  terms  of  the  relative  information  that  I  am  going  to  be  receiving 
 from my neighbors. 

 So,  essentially  I  am  writing  this  e  i  and  using  e  ij  which  is  the  relative  information  that  I 
 have  with  respect  to  my  neighbors.  So,  essentially  as  long  as  w  is  an  odd  function,  this 
 holds  true  for  undirected  unweighted  graphs.  So,  these  two  results,  so  I  guess  that  is  all  I 
 wanted  to  cover  in  today's  lecture  and  these  two  results  we  are  eventually,  so  in  the  next 
 set  of  lectures  we  are  going  to  be  basically  both  describing  the  algorithm  for  consensus 
 first  of  all  and  also  then  for  distributed  optimization,  but  in  both  these  scenarios  we  would 
 be  making  use  of  these  results.  and  the  same  idea  of  fixed  time  gradient  flow  that  we 
 looked  at.  So,  if  you  think  of  fixed  time  gradient  flows  what  we  do  is  you  have  gradient 
 divided  by  the  norm  of  the  gradient  right  which  kind  of  almost  looks  like  you  are  trying 
 to  use  some  kind  of  signum  information  and  that  is  where  this  sign  thing  comes  into 



 picture  because  you  are  going  to  be  using  the  signum  or  the  signed  gradient  flow  there 
 ok. Thank you very much  . 




