Distributed Optimization and Machine Learning
Prof. Mayank Baranwal
Computer Science & Engineering, Electrical Engineering, Mathematics
Indian Institute of Technology Bombay
Week-8
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So, for any row stochastic matrix. max eigenvalue is 1 and if the graph is and if the
underlying graph is strongly connected, strongly connected then 1 is also a simple
eigenvalue. So in order to look at this, so let us look at, so fact 1 was every, so we were
using this particular, it was here. A real symmetric matrix has real eigenvalues and it is
also diagonalizable. Let us look at fact 2. So something that we have already looked at
which is a row stochastic matrix has an eigenvalue which is 1 right, so 1 is an eigenvalue.

So, everyone with me on this? So, A times vector of 1 is simply 1. So, 1 is one of the
eigenvalues of a row stochastic matrix. Fact number 3, no so which is basically related to
the point that we just above mentioned just above. So, the no other eigenvalue is more
than 1 for the row stochastic matrix.

So, how do we show this? So, let us say there exists a lambda greater than 1. So, we are
going to show this by contradiction, there exists lambda greater than 1 which is also the
eigenvalue of this of a row stochastic matrix right. matrix A with let us say eigenvalue v
eigenvector v with v being the eigenvector. So, A times v it is going it is first of all it is
going to be lambda times v and let us say i being the So, choose a max largest entry of
your eigenvector ok. So, if I do A times v I am going to get.
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So, basically the effect of this A times v would be lambda times v. So, that means for
that particular ith entry I am going to be getting what? So, lambda times vi for that ith
entry ok which is going to be greater than vi because lambda is more than 1, but at the
same time what do the entries of A look like? It is essentially convex combinations of



different v's right like it is essentially like if I do A times v it is essentially doing convex
combinations of different v's if every row of A and that means every element is going to
be smaller than the, so this A times v the ith element of this is going to be less than equal
to vi. right. So, from one end we are getting it strictly greater than v i, from other end we
are saying it is less than equal to v i. So, which is a contradiction and therefore, you
cannot have an eigenvalue more than.

So, this is a contradiction and therefore, you cannot have an eigenvalue which is more
than 1 for a row stochastic matrix ok. So, that is the fact that is fact number 3. And the
fact number 4 is if the underlying graph is strongly connected, then 1 is also a simple
eigenvalue. and the proof is of this is going to be very similar to how we looked at the
proof for the Laplacians for the number of connected components right. So, if the graph
is connected then 1 is the simple eigenvalue that means algebraic multiplicity of 1 is also
is same as geometric multiplicity of this 1 eigenvalue which is going to be 1 ok.

So, with all the sort of key ingredients So, I am going to list out this theorem I mean you
can I will maybe share post a proof on teams, but we will probably not have proof in this
class. But then this would be this using this particular result we are then going to
conclude that for rows stochastic matrix which are also symmetric in that case you are
going to be arriving at average consensus and not just the consensus. be a non-negative.
So, let A be a non-negative matrix with dominant eigenvalue lambda and the right and
left eigenvectors are v and w such that v transpose w is 1. If lambda is simple and strictly
larger in magnitude than all other eigenvalues, then we have limit k going to infinity ok.

So, let us revisit this statement. So, what this says is that let A be an A be a square matrix
which is a non-negative matrix. So, that means every entry is greater than equal to 0 and
the dominant eigenvalue of this matrix is lambda. for that eigenvalue lambda the right
and the left eigenvectors are v and w ok. So, what do you mean by right eigenvector? So,
a A times v is lambda v.

So, that is a right eigenvector w transpose A is equal to lambda w transpose that is
basically your left eigenvector ok. So, the right eigen right and the left eigenvectors are v
and w for corresponding to this lambda and we also normalize these eigenvectors. So,
that v transpose w is equal to 1. So, if lambda is simple ok and strictly larger in
magnitude than all other eigenvalues, then limit of this is essentially vw transpose ok.
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So, let us look at the consequence of this in the context of consensus problems.



So, application of our theorem in the context of the average consensus. So, first of all
we are going to be working with matrices which are row stochastic right. So, A is row
stochastic. So, what is the dominant eigenvalue? 1 right. So, is rows A is row stochastic.

So, lambda is equal to 1 and what is the right and the left eigenvectors? So, v is going to
be let us say vector of all ones. The next thing that we introduce is lambda being simple
right. So, if the underlying graph is connected So, then lambda is simple. So, if and that
also makes sense if the graph is connected that means, then we would be able to
exchange in like any node will be able to exchange information with any other node and
that is when we can talk about nodes arriving at consensus right. So, if the underlying
graph is connected graph is connected.

this implies lambda equal to 1 is simple ok. So, on top of this if A is symmetric which

means it is also column stochastic ok, then what is a left eigenvector? It will be a vector
of all ones divided by n, divided by n because we want to make sure that v transpose w is
equal to 1. right. So, ok. Is this clear? So, now if A is row stochastic and symmetric
which makes A to be column stochastic, we assume that the underlying graph is
connected.

So, therefore, this lambda equal to 1 is simple and because A is row stochastic lambda is
equal to 1 is also dominant. So, all the conditions of this particular theorem are being
satisfied and therefore, limit k goes to infinity A to the k I mean lambda is equal to 1
right. So, this implies as a consequence of this particular theorem limit k going to infinity
A to the k essentially is equal to v w transpose which is 1 1 transpose divided by n ok.
And if I look at the consensus algorithm which looks something like this x k plus 1 is a to
the k plus 1 x naught. So, limit k goes to infinity x k plus 1 is essentially limit k goes to
infinity A to the k which is 1 1 transpose over n.
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So, this is equal to 1 1 transpose x naught over n right and this means that every agent
arrives at the. So, 1 over n summation i equal 1 through n x 1 0 right ok. So, 1 transpose x
A x naught is basically the summation of all the and then it is the same vector that is



getting repeated and then you divide it by n. So, that means you arrive at the average
consensus. So, a sufficient condition for average consensus is, the row stochastic, A is
symmetric, underlying graph is connected.

So, if all these three are satisfied, then you can guarantee that the nodes they reach
average. Is this clear? And that is why now if I If you look at if you consider the
previous example that we looked at in the second case when A 2 or the in the second
algorithm when A was doubly stochastic or I mean both row stochastic as well as
symmetric then we saw that the agents or the sensors values they reached like all of them
they converge to this number 24 right. So, this is just a sufficient condition. it may
happen that with just with a non-symmetric A which is just host stochastic in certain
cases you may get average consensus, but this is as I said this is not necessary this is just
sufficient condition ok. So, if I consider two different types of graphs, so something like
let us say a line graph or you have a complete graph right from which let us say there are
5 nodes.

So, in a complete graph every node is connected to every other node and so on ok. So,
how many nodes like let us say if you have n nodes here, how many edges are here?
edges is n minus 1 and diameter, diameter is also n minus 1 right. So, you would need
what about number of edges here and yeah n choose 2 and the diameter just one right
because in one step you would be able to reach any other node. So, the diameter is just
one. So, which is preferred a line graph or a complete graph? In general let us say you
want to run a decentralized distributed algorithm which.
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So, first of all which one do you think would it is easier to arrive at consensus or it is
faster to arrive at consensus? Faster right. So, consensus is faster here. right. But then
what is the shortcoming of? Yeah, so communication I mean you have a high
communication bandwidth requirement for every node right. So, that is also not
preferred.

So, consensus I mean it is a plus, but then it is not so good in when it comes to



communication bandwidth requirement right? Okay.

Okay. Yeah. Which one? From. Yeah. So, again the topology plays a key role I mean
obviously, you can in one case you can arrive at the let us say [ mean it right now we are
just talking about consensus, but when we are talking about solving a distributed
optimization problem. In one case it is because the consensus happens faster it is also
possible to arrive at the optimal solution for the common goal faster, but then it comes at
the cost of requiring high communication bandwidth right. So, every node is going to be
communicating with n minus 1 nodes in this in this case, whereas here every node is
communicating with just 2 nodes at best. So, this I mean so in terms of communication
line graph essentially has a very low communication bandwidth requirement right.

So it is basically somewhere midway is what I mean what an ideal topology would look
like and if you and in that case that is something called static and we will come to this
later maybe towards the last set of lectures is something called static exponential graphs
which in some sense basically achieve the sweet spot between the communication
bandwidth requirement as well as the like basically also trying to minimize the diameter.
So, what static exponential graph is that every node is let us say the node 1 it is going to
be connected to its second node, then 2 to the which is the fourth node, then the eighth
node and so on. So, every node sort of in a modular fashion is going to be connected to
its immediate, then 2 to the 1 which is second node, then 2 to the 2 which is fourth node,
2 to the 3 which is eighth node. And that's how you in fact it's a directed graph and you
can show in fact there is very recent paper it showed that this is kind of is better than any
known topologies whether it complete graph line graph is also something called ring
graph which is essentially an extension of line graph, but it just by closing the ring it
reduces the diameter by half right. because now the information earlier it was n minus 1,
now it will be n minus 1 over 2 or n by 2 depending on.
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So, this is so, the diameter becomes half whereas, the communication bandwidth
requirement is pretty much the same except for the two end nodes which were earlier
exchanging information with just one neighbor. Now, they are going to be everyone is
going to be exchanging information with just two neighbors, but the diameter kind of
becomes half of the original one right. nearly half of ok. So, the role of the topology is
going to play a key I mean the topology is going to play a very key role and as I said in
the previous lecture that related to topology or the graph diameter is your Fiedler value
and you would see that the algorithms that we are going to be deriving the rate basically
the rate of convergence that is going to be dependent on the Fiedler value of the



underlying network. So, smaller diameter means larger Fiedler value and smaller
diameter means you can arrive at consensus faster.

So, they are going to be proportional to the Fiedler value ok. So, before we arrive like
before we start discussing the algorithm, I just wanted to briefly discuss two key results
that we would eventually use in the subsequent lectures some important results on. So, let
us say if I have something like this, so then there are n n agents in the network and we
assume that it is an undirected unweighted graph. So, aijs are going to be 1 if there is an
edge and 0 else.

The sign is a signum function ok. So sign of xi minus xj, so that is going to be, I mean
you can also imagine these to be vector-valued functions. So xi can, so every agent need
not just have a scalar quantity, every agent can have a vector-valued quantity, right. So
then you basically evaluate this component-wise. So the idea is if you have an odd
function like this, like a signum function here, then So, the summation of something like
this is going to be. So, it could have been f of x 1 minus x j where f is an odd function.
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So, as long as you have that odd function this is going to be 0. So, quick proof of this.
Component wise. So let us say T is this is what we are trying to evaluate ok. So by
definition, this is nothing but j from 1 through n aij by the way this is true for undirected
ok.

So, is this clear? So, instead of writing j over the neighborhood set I basically iterate j
from 1 through n, but I use aij ok. And since i1 and j are dummy indices I can write this as
j 1 through a j i1 and these are undirected unweighted graph. So, aij is same as a j i both
are equal to 1 and sin of x j minus x i is minus of sin of X i minus x j. So, this becomes a 1
through which is minus T right. So, this implies that T is equal to 0 or essentially what we
wanted ok.

So, we use sign because eventually, the optimization algorithm that we are going to be
using it is going to be a signed gradient flow. So, that is why I am using sign here, but as [
said this would hold true for any odd function. The only property of signum that we use
here was I mean it is essentially an odd function. So, any odd function and this would



have still worked.
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It can also be a vector-valued odd function. In that case, we would assume it basically
applies component wise ok. So, that is what that is one result. Another result that we
wanted to arrive at was 1 through n. So, the another result that we want to derive and
again this is the result that we would be eventually using later. So, that is why I am
deriving it right now is this particular term which is nothing but saying that summation 1
1 through n summation j in the neighborhood set of i1 e i transpose w X 1 j this is equal to
this particular term ok.
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So, e 1 x 1] is essentially the difference between x 1 and x j and I am just denoting this by
X 1]. So, in the previous example, in the previous result, this is X 1 j, X 1 minus X j. And let
us say node i also has another vector e i, another piece of information e i. So, this is
nothing but this particular term if w is an odd function. So, let us quickly Take a look at
the proof So, since w is an odd function xij is xi minus Xj.



So, this becomes xj, if I write it in terms of Xji, then it basically aij ei transpose w xji and
again since 1 and j are dummy indices, I can write this as ij 1 through aji e j transpose w
x 1j. And ajiis same as a i j because it is an undirected unweighted graph. So, therefore,
thisis aij e j transpose w x 1 j.
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ok and this pretty much. So, this is 2 times of. So, what do we want to arrive? Oh right, I
just add the same quantity to it right. So, if I add this quantity over here. So, essentially
the same quantity. So, 2 times of this e i1 transpose w x i j essentially I add the same
quantity over here and this gives me ok, which is same as 1 through n a ij. e ij transpose
w X 1j and this basically gives us the result that we wanted to arrive at So, basically a key
consequence of this result is, so this one is in terms of my own information right, but then
I can sort of write it in terms of the relative information that I am going to be receiving
from my neighbors.

So, essentially I am writing this e 1 and using e ij which is the relative information that I
have with respect to my neighbors. So, essentially as long as w is an odd function, this
holds true for undirected unweighted graphs. So, these two results, so I guess that is all I
wanted to cover in today's lecture and these two results we are eventually, so in the next
set of lectures we are going to be basically both describing the algorithm for consensus
first of all and also then for distributed optimization, but in both these scenarios we would
be making use of these results. and the same idea of fixed time gradient flow that we
looked at. So, if you think of fixed time gradient flows what we do is you have gradient
divided by the norm of the gradient right which kind of almost looks like you are trying
to use some kind of signum information and that is where this sign thing comes into



picture because you are going to be using the signum or the signed gradient flow there
ok. Thank you very much.






