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 So,  everyone  now  knows  what  adjacency  matrix  in  a  graph  is  right.  So,  let  us  try  and  see 
 what  the  role  of  adjacency  matrix  is.  So,  let  us  say  I  have  a  graph  which  looks  something 
 like  this.  So,  it  is  a  directed  graph.  you  can  for  now  assume  that  the  edge  weights  are 
 simply  1.  So,  first  of  all  is  this  graph  strongly  connected?  No  right,  so  not  strongly 
 connected. 

 Ok  so  how,  so  what  does  the  adjacency  matrix  for  this  graph  looks  like?  Are  there  any 
 self  loops?  So  these  diagonal  entries  are  going  to  be  all  zeros.  So  they  are  only  outgoing 
 edges  let's  say  from  1,  they  are  only  outgoing  edges  to  2  and  3  right.  So  that  means  x  can, 
 1  can  broadcast  to  2  and  3,  but  cannot  receive  any  message  from  anyone  else.  So  it  can 
 broadcast to 2 and 3. 

 So  this  is  the  entry  for  the  Likewise  you  have  for  2  it  can  broadcast  to  4  and  you  have  0s 
 here,  for  3  it  can  broadcast  to  2  and  4  and  4  it  cannot  broadcast  to  anyone,  so  all  the 
 entries  are  going  to  be  And  as  I  said  in  case  of  directed  graphs,  it  is  possible  that  the 
 adjacency  matrix  is  not  symmetric  and  that  is  what  you  see  right.  So,  not  symmetric.  So, 
 when  I  do  a  times  let  us  say  x,  x  being  x  1,  x  2,  x  3,  x  4.  So,  what  is  the  output  of  this? 
 So,  that  would  be  0  for  the  first  entry.  because  if  1  is  not  going  to  be  getting  any 
 information  from  anyone  right,  what  about  2?  So,  x1  plus  x3,  this  is  going  to  be  x1  and 
 this is x2 plus x3. 



 So, let us look at what happens when we use A square. So, what is A square? You can do 
 the math, it turns out that A square is simply  So, this is your A square. Now, if I do A 
 square times x, what does this look like? So, the first entry is again going to be 0, the 
 second entry is x1, 0 and 2x1 plus x3. So, I mean this makes sense because you can see 
 that 2 is going to be receiving information from let us say here. So, 2 is going to be 
 receiving information from 1 and 3 and that is because of this right, this edge and then 
 this particular edge right. 

 So,  you  have  x  1  and  x  3  showing  up.  Likewise,  4  is  going  to  be  receiving  information 
 from  2  and  3  and  that  is  why  you  have  x  2  and  x  3  showing  up.  Why  do  you  have  x  1 
 showing  up  here?  for  that  matter  x  1  and  x  3  showing  up  here.  So,  if  I  look  at  the  second 
 one right 2. So, 2 yeah. 

 So,  in  this  case  we  have  x  1  showing  up  and  actually  there  is  a  2  hop  information  flow 
 from  1  to  2  right.  And  if  I  look  at  the  x  4  there  is  also  a  2  hop  information  flow  from  here 
 and  2  hop  information  flow  from  here  ok.  So,  that  means  if  I  do  A  to  the  k  times  x.  So, 
 what  I  am  essentially  doing  is  I  am  aggregating  information  for  my  k  hop  neighbors  or  I 
 am  receiving  information  for  my  k  hop  neighbors.  right  and  that  is  in  fact  how  the 
 information propagates in a graph. 

 So,  the  first  time  I  do  A  times  x,  I  basically  receive  information  from  my  immediate 
 neighbors  But  in  that  process,  the  neighbors  would  have  also  received  information  from 
 their  neighbors,  right?  So  the  next  time  when  I  aggregate  information  from  my  neighbors, 
 I'm  going  to  be  receiving  the  information  that  my  neighbors  have  aggregated  from  others, 
 right?  So  essentially  getting  information  from  my  two  hop  neighbors  and  three  hop 
 neighbors  and  so  on.  So  that's  how  the  information  flows  in  a  graph  and  that's  why  when 
 you  have  a  line  graph,  where  you  then  for  the  information  to  propagate  from  let  us  say 
 the  first  node  to  the  end  node  that  is  going  to  take  at  least  10  minus  1  steps  because  that  is 
 that  is  the  amount  of  time  it  is  going  to  take  to  propagate  information  from  one  end  to 
 another  right.  But  then  so  if  you  guys  are  aware  of  something  called  graph  convolutional 
 neural  networks  or  if  you  are  aware  of  neural  networks,  I  mean  like  are  you  guys  aware 



 of  neural  networks  in  general  or  convolutional  neural  networks?  So,  convolutional  neural 
 network  is  that  you  aggregate  information  from  your  neighbors.  So  think  of  this  particular 
 application  as  information  aggregation  with  your  one-hop  neighbors,  two-hop  neighbors, 
 so  every  layer  in  fact  A  to  the  k  when  you  say  A  to  the  kx  that  means  there  are  k  such 
 layers,  every  layer  is  aggregating  information  from  one-hop  neighbors,  two-hop 
 neighbors,  three  hop  neighbors  and  so  on  and  in  between  you  introduce  some  level  of 
 non-linearity  and  that's  how  you  make  any  predictions  on  graphs  if  you  have  graph 
 structured data. So that is the idea. 

 So,  this  brings  us  brings  us  to  an  important  topic  in  the  context  of  distributed 
 optimization  which  is  consensus  and  by  definition  basically  it  amounts  to  all  nodes 
 converging  to  a  common  value.  So,  consensus  just  talks  about  every  node  eventually 
 converging  to  the  same  common  value  that  common  value  can  be  anything.  I  mean  you 
 can  like  let  us  say  all  nodes  can  eventually  converge  to  0  being,  but  that  may  not  be  very 
 useful  information.  So,  sometimes  not  it  is  not  just  the  consensus  part  that  we  are 
 interested  in,  but  we  are  also  interested  in  something  called  average  consensus.  So  the 
 idea  is  every  node,  so  this  is  consensus,  so  every  node  converges  to  a  common  value  so 
 that is there, but that common value happens to be average of all initial values. 

 So  essentially  if  you  have  x1,  x2,  x3  and  x4  as  the  value  that  every  node  possesses,  and 
 if  there  are  n  such  nodes.  So,  you  want  consensus  algorithm  to  essentially  arrive  at  this 
 particular  common  value.  So,  this  is  called  average  consensus  ok.  So,  you  have  a  belief 
 someone  else  may  have  a  belief  and  you  want  to  arrive  at  the  average  of  all  the  beliefs 
 and  this  is  what  average  consensus  is  about.  So,  if  you  remember  the  example  that  we 
 considered  in  the  first  lecture  itself  which  was  about  temperature  sensors  being  installed 
 and  every  every  every  sensor  measuring  temperature  differently  and  we  want  to  arrive  at 
 the average of all what everyone else is measuring right. 

 every  sensor  is  measuring  and  we  looked  at  two  different  ways  to  run  the  consensus 
 algorithm  and  it  so  turned  out  that  in  one  case  we  were  able  to  arrive  at  consensus  but  it 



 was  not  the  average  consensus  that  we  intended  to  and  by  choosing  a  different  consensus 
 algorithm  or  different  weighting  scheme  we  were  able  to  arrive  at  the  average  consensus. 
 So  the  goal  for  today's  lecture  is  to  understand  the  conditions  under  which  you,  so 
 conditions  under  which  consensus  is  achieved  and  then  conditions  under  which  average 
 consensus  is  achieved.  So,  you  have  to  have  certain  conditions  if  those  are  satisfied  then 
 you  can  guarantee  average  consensus,  and  so  on.  So,  we  are  going  to  study  those 
 sufficient conditions. 

 conditions.  There  are  other  forms  of  consensus  that  you  may  often  find  in  other  papers 
 which  are  max  consensus  or  min  consensus.  And  as  the  name  suggests,  Every  agent  tries 
 to  arrive  at  the  max  of  the  values  that  like  every  agent  in  the  network  processes,  right.  So, 
 let  us  say  you  have  a  graph  which  looks  something  like  this.  And  agent  1  has  a  value  t1, 
 t2,  t3,  t4,  t5  and  t6.  So,  the  objective  of  max  consensus  is  that  every  agent  is  able  to  arrive 
 at  the  max  of  all  these  values  t1,  t2,  t3  So,  can  you  think  of  an  algorithm  which  does 
 that? So, let us say I want to achieve this max consensus in this particular graph. 

 So,  what  kind  of  algorithm  would  a  very  simple  algorithm  that  you  can  think  of  that  can 
 achieve  max  consensus  or  min  consensus  for  that  matter.  Again  agents  can  only 
 communicate  with  their  neighbors  right.  So,  that  is  that  is  one  of  the  constraints  that  the 
 agents  have.  It  is  very  simple  yeah.  So,  every  agent  just  exchanges  information  and 
 basically  replaces  its  current  value  with  the  max  of  whatever  information  it  has  received 
 from its neighbors right. 

 And  that  would  and  just  replaces  its  current  state  with  the  max  of  its  current  and  its 
 neighbor  state  right.  So,  agent  i.  So,  Ti  k  plus  1  is  simply  going  to  be  max  of  Ti  k  and  Tj 
 k  for  every  j  in  the  neighbor  would  certify  right.  So,  every  agent  runs  this  and  how  in  how 
 many  steps  is  it  guaranteed  to  converge?  Yeah,  so  the  diameter  of  the  graph  right.  So,  if 
 diameter  of  the  graph  is  d  is  the  graph  diameter  then  this  algorithm  converges  in  in  d 
 steps ok. 



 That  may  not  be  the  case  with  the  with  the  other  can  like  asymptotic  or  the  average 
 consensus  things  that  we  algorithms  that  we  are  going  to  talk  about.  There  is  an  naive 
 way  to  let  us  say  obtain  average  consensus  is  that  you  have  you  run  the  max  consensus  I 
 mean  you  also.  So,  essentially  you  are  going  to  be  storing  the  max  value,  but  then  at  the 
 same  time  you  also  have  a  copy  of  your  current  value  right.  So,  in  the  first  d  step  you  are 
 going to be storing the max value. 

 in  the  second  d  steps  you  are  going  to  be  storing  the  second  largest  value  and  the  third 
 largest  value  and  the  fourth  largest  value  and  so  on.  So  that  means  in  n  times  d  steps  right 
 you  would  have  essentially  all  the  values  known  and  then  you  just  take  the  average  of  it 
 and  that  is  also  going  to  give  you  the  average  consensus.  So  that  is  a  naive  way  to  go 
 about  it  and  in  fact  in  a  finite  number  of  steps  you  are  guaranteed  to  get  the  exact  average 
 consensus  value,  but  that  is  not  the  kind  of  algorithm  that  we  are  going  to  be  looking  at 
 because  if  the  graph  diameter  is  large  you  do  not  want  and  if  or  let  us  say  the  graph 
 diameter  is  also  small,  but  if  number  of  agents  is  very  large  you  cannot  just  wait  for  n 
 times  t  steps  right.  So  that  is  so  we  would  want  to  avoid  this  kind  of  naive  way  to.  obtain 
 average consensus or the consensus. 

 So,  this  kind  of  scheme  is  often  used  consensus  often  used  in  opinion  dynamics  as  I 
 mentioned  that  you  have  certain  beliefs,  your  neighbors  may  have  certain  like  some 
 other  beliefs  and  you  want  to  maybe  obtain  like  the  consensus  of  all  the  beliefs  right. 
 Let's  say  I  mean  you  vote  for  one  particular  party,  your  friend  votes  for  some  other  party 
 and  so  on  right  and  you  want  to  see  where  the  average  trend  is  going  on.  So,  that  this  is 
 where  the  average  consensus  or  the  consensus  models  really  help  you  with.  So,  in  this 
 context  you  have  the  French  Harary  De  Groot  dynamics  model,  opinion  dynamics  ok. 
 And  the  way  it  works  is  that  your  opinion  at  time  t  plus  1  or  a  step  k  plus  1,  the  dynamics 
 essentially  say there are n agents in the network a ij where such that ok. 

 And  let  and  a  ii  is  nothing,  but  the  relative  like  relative  importance  to  its  own  belief  So, 
 what  let  us  let  us  look  at  this  dynamics  in  sort  of  more  detail.  So,  aij  potentially  can  be  0 
 that  means  j  is  not  a  neighbor  of  i  right,  but  if  they  are  non-zero  then  you  look  at  the  your 
 neighbors  belief  and  you  essentially  do  a  weighted  average  of  those  neighbors  belief  and 
 this  is  your  current  belief  now  ok  and  then  you  sort  of  run  it  multiple  times.  So,  if  you 



 look  at  the  dynamics  of  this,  this  is  nothing,  but  p  of  t  plus  1  is  the  is  essentially  A  times 
 p  of  t,  where  A  is  the  adjacency  matrix  of  the  graph  and  this  time  it  is  going  to  be  a 
 weighted  graph,  okay.  So,  what  property  does  A  have  here,  this  matrix  A?  So,  A  is  row 
 stochastic, right. So, that means the row sum is 1. 

 So,  A  is  row  stochastic,  row  sum  is  1.  So,  does  row  stochastic  A  guarantee  consensus? 
 So,  that  is  the  first  question  that  we  are  going  to  look  at  and  the  second  question  is  does 
 row  stocastic  A  guarantee  average  consensus  ok.  So,  what  do  you  think  the  answer 
 should  be  for  both  these  questions.  So,  p  of  t  plus  1  is  essentially  A  to  the  p  of  t  plus  1  let 
 us  say  p  0  right  ok.  So,  what  do  we  know  about  A?  A  is  row  stochastic  meaning  A  times 
 if I look at vector of all 1's this is going to give you vector of all 1's right. 

 Let us call it let us say they are n agents. So, this is what it is going to give you. So, that 
 means this vector of all 1's is is an eigenvector of  A with eigenvalue also equal to 1 . So, 
 as long as  as long as the eigenvalues of other eigenvalues of A are strictly smaller than 1 
 or let us say smaller than 1 ok or less than equal to 1 that means your opinions are I mean 
 not diverging right as you run this multiple times as you make a to the t plus 1 as you are 
 exponentiating it further and further So, I mean think of it in the scalar case right, let us 
 say if it is just a scalar case if it I mean eigenvalue less than 1 or less than equal to 1 
 means that you are not sort of diverging the beliefs with every iteration right. So, then 



 you can hope that in fact this would arrive at consensus. 

 So, with row stochastic A you can guarantee consensus. So, this is true, but with row 
 stochastic A you can you need not I mean you would not be able to guarantee average 
 consensus. So, this is not true. in general I mean it is possible, but it is not true in general 
 ok. So, let us let us revisit the example that we looked at in the first lecture.  So, it is a 
 simple setting that we are looking at. So, you have a graph in this case you have 4 
 different values. So, there are 4 different sensors each measuring temperature. So, one of 
 them is one of the sensors measures 25 Celsius, 20, 24 and 27. and the goal is to arrive at 
 average consensus.  So, average of these senses right and the connectivity that we have is 
 1 is connected to 2 and vice versa, 2 is connected to all the senses, 3 is connected to 2, 3, 
 2 and 4 and 4 is again connected to 2 and 3. So, that is the connectivity that we have 
 right. So, if I consider this particular adjacency matrix A 1 and I run this algorithm. 

 So, basically essentially doing A times x and then we are just kind of repeating this over 
 right. So, we see that it eventually arrives at a consensus value, but then it is not the 
 average consensus, the average value is 24 whereas this arrives at something at 23. 



 5 it is something right. And if you look at the matrix A, so is this row stochastic? Yes 
 right. So, it is row stochastic. So, consensus I mean you see the consensus happening, but 
 there is no average consensus. But if I change my A to be to look something I mean 
 which looks something like this now right. 

 So, again it is row stochastic and it is not just row stochastic it is something else as well. 
 It is symmetric as well right and this also makes it column stochastic. So, if I run this 
 with this particular choice of A you see that eventually they arrive at the consensus value 
 right ok. So, which is the average consensus value which is 24. 

 And so, in this lecture we are going to look at the theory behind it as to why doubly 
 stochastic matrix or the basically guarantees you average consensus, ok. So, the point that 
 we are trying to make here is, so not all A that are row stochastic,  will lead to average 
 consensus. 

 So, basically what do we want? We want that x k plus 1 which is essentially A to the A 
 times x k. So, we have or another way to write this is A to the k plus 1 times x naught. 
 So, we want limit k goes to infinity. x k is essentially goes to summation this is what we 
 want. So, we want that all agents they converge to this common value. 



 So, for this we would need a little very brief refresher on linear algebra. So, let us briefly 
 revisit linear algebra to be able to understand this in more detail. So, everyone here had 
 has had some course on linear algebra. So, similarity transformation, diagonalizability is 
 that ok with everyone. 

 So, we will just quickly recap this. So, what is similarity transformation of? So, if a 
 matrix A, so what do you mean by similarity transformation? So, which is? So, 
 something like this right PJP inverse right. So, we say so, square matrices first of all A 
 and J they need to be square matrices right. So, in fact p and p and p as well. So, A and J 
 are similar if they can be related using this particular transformation ok. 

 So, if J happens to be a diagonal matrix, then we say that A is diagonalizable. 
 We will come to that P part. So, what is what could be a good choice for P and J? So, 
 how do we choose P and J here? So, let us say you have let us say A has n different 
 eigenvalues eigenvector pairs. So,  A is n cross n and it has these eigenvectors eigenvalue 
 pairs right. So, we know that A v 1 for instance is lambda 1 v 1, A v 2 is lambda 2 v 2 
 and so on. And for now let us just assume that lambda 1 through lambda n are different 
 ok. So, I can write this as A times v 1 v n  ok. 



 And this you can call the J, this is your P and you can write this as P J P inverse. 

 If you have n different eigenvalues and n different eigenvector pairs, they are going to be 
 linearly independent, P inverse exists and therefore you can write A as P J P inverse ok. 
 So, we assume obviously A has distinct  also let us say simple eigenvalues. So fact one, 
 so we are going to be here. So the fact one is, so a real, by the way when we talk about 
 doubly stochastic it is going to be a symmetric matrix. 

 So one of the facts is that a real symmetric matrix  has real eigenvalues and is also 
 diagonalizable ok. So, when we talk about let us say in something like identity matrix 
 which is let us say 3 by 3  So, what are the eigenvalues of this matrix? So, all all eigen 
 like so eigenvalues are essentially I mean there is just one eigenvalue right, but what are 
 the eigenvectors? So, what is what is the definition of an eigenvector? So, how do you 
 find the eigenvector if you know the eigenvalue? Null space of A minus lambda I right. 
 So, null space of  A minus A in this case a is I simply identity. So, identity minus identity 
 right which is a 0 matrix right. So, essentially in fact these three columns are the 
 eigenvectors. 



 So, even though you have one eigenvalue you have distinct eigenvectors right. So, 
 whereas if you consider an example which looks something like this. Let us say 5 this 
 particular matrix 5 4 2 1, 0 1 minus 1. So, how do we find the eigenvalues of a matrix? 
 Just set the determinant of A minus lambda, just find the characteristic equation. set it to 
 0 and it would it turns out that the Eigen basically the characteristic equation is given by 
 lambda 1 minus lambda minus 2 lambda minus 4 whole square equal to 0. 

 Now, the repeated Eigen value is lambda equal to 4 right and it turns out that if I try to 
 find the null space of a minus 4 identity like if I try to find a vector p such that this is 
 equal to 0. unlike in the previous case where I actually get three different vectors even 
 with in this case I am going to get just one vector. I mean plus and minus the scale 
 scaling, but I am going to get just one vector right. So, then what do we do? Square what? 
 So, what is it called? So, let us say I get p. 

 So, p 3 is my p 3 is an eigenvector. corresponding to 4, eigenvalue 4. So then what do we 
 do? So we find P4 such that this is equal to P3. So this is called generalized eigenvector. 
 which is same as I mean if I multiply this by A minus 4 I times identity then this is equal 
 to 0. 



 So, essentially you square it and try to find it. So, when we try to diagonalize this kind 
 of, so first in this case this a is not diagonalizable, it is not perfectly diagonalizable, but it 
 is I mean it can be approximately diagonalized using something called  Jordan blocks 
 right, is everyone familiar with Jordan blocks? No, ok. So, Jordan blocks are the like. So, 
 essentially in this case J would look something like this. So, for all the eigenvectors for 
 all the simple eigenvalues which have which do not have this multiplicity. 

 So, which in this case are 1 and 2. So, you would get something like this, but for the 
 other one  I mean technically if the matrix was diagonalizable this is what I mean you 
 would have gotten zeros over here, but you get a 1 here and this is. So, you get a Jordan 
 block. So, Jordan block J is essentially lambda i. So, in this case it is a 2 by 2 Jordan 
 block lambda i 2 plus 2 plus a nil potent matrix. 

 So, this is this is a Jordan block here. So, if let us say let us say we were talking about 5 
 by 5 matrix dimensional matrix A and let us say 4 was repeated 3 times and still I mean 
 and there was just one distinct eigenvector, then that means there are two generalized 
 eigenvectors and you would have gotten this to be your Jordan block ok. So, again A plus 
 lambda I plus n the Jordan the nilpotent matrix. But the point is if using these P 1 through 
 P 4, so if I use P J P inverse with this being your J, you can still write A in terms of P like 
 using similarity transformation as P J P inverse where J is not perfectly diagonal, but 
 approximately diagonal. Thank you. 




