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‭So,‬‭everyone‬‭now‬‭knows‬‭what‬‭adjacency‬‭matrix‬‭in‬‭a‬‭graph‬‭is‬‭right.‬‭So,‬‭let‬‭us‬‭try‬‭and‬‭see‬
‭what‬‭the‬‭role‬‭of‬‭adjacency‬‭matrix‬‭is.‬‭So,‬‭let‬‭us‬‭say‬‭I‬‭have‬‭a‬‭graph‬‭which‬‭looks‬‭something‬
‭like‬ ‭this.‬ ‭So,‬ ‭it‬ ‭is‬ ‭a‬ ‭directed‬ ‭graph.‬ ‭you‬ ‭can‬ ‭for‬ ‭now‬ ‭assume‬ ‭that‬ ‭the‬ ‭edge‬ ‭weights‬ ‭are‬
‭simply‬ ‭1.‬ ‭So,‬ ‭first‬ ‭of‬ ‭all‬ ‭is‬ ‭this‬ ‭graph‬ ‭strongly‬ ‭connected?‬ ‭No‬ ‭right,‬ ‭so‬ ‭not‬ ‭strongly‬
‭connected.‬

‭Ok‬ ‭so‬ ‭how,‬‭so‬‭what‬‭does‬‭the‬‭adjacency‬‭matrix‬‭for‬‭this‬‭graph‬‭looks‬‭like?‬‭Are‬‭there‬‭any‬
‭self‬‭loops?‬‭So‬‭these‬‭diagonal‬‭entries‬‭are‬‭going‬‭to‬‭be‬‭all‬‭zeros.‬‭So‬‭they‬‭are‬‭only‬‭outgoing‬
‭edges‬‭let's‬‭say‬‭from‬‭1,‬‭they‬‭are‬‭only‬‭outgoing‬‭edges‬‭to‬‭2‬‭and‬‭3‬‭right.‬‭So‬‭that‬‭means‬‭x‬‭can,‬
‭1‬ ‭can‬ ‭broadcast‬ ‭to‬‭2‬‭and‬‭3,‬‭but‬‭cannot‬‭receive‬‭any‬‭message‬‭from‬‭anyone‬‭else.‬‭So‬‭it‬‭can‬
‭broadcast to 2 and 3.‬

‭So‬‭this‬‭is‬‭the‬‭entry‬‭for‬‭the‬ ‭Likewise‬‭you‬‭have‬‭for‬‭2‬‭it‬‭can‬‭broadcast‬‭to‬‭4‬‭and‬‭you‬‭have‬‭0s‬
‭here,‬ ‭for‬ ‭3‬ ‭it‬ ‭can‬ ‭broadcast‬ ‭to‬ ‭2‬ ‭and‬ ‭4‬ ‭and‬ ‭4‬ ‭it‬ ‭cannot‬ ‭broadcast‬ ‭to‬ ‭anyone,‬ ‭so‬ ‭all‬ ‭the‬
‭entries‬ ‭are‬ ‭going‬ ‭to‬ ‭be‬ ‭And‬ ‭as‬ ‭I‬ ‭said‬ ‭in‬ ‭case‬ ‭of‬ ‭directed‬ ‭graphs,‬ ‭it‬‭is‬‭possible‬‭that‬‭the‬
‭adjacency‬‭matrix‬‭is‬‭not‬‭symmetric‬‭and‬‭that‬‭is‬‭what‬‭you‬‭see‬‭right.‬‭So,‬‭not‬‭symmetric.‬‭So,‬
‭when‬‭I‬‭do‬‭a‬‭times‬‭let‬‭us‬‭say‬‭x,‬‭x‬‭being‬‭x‬‭1,‬‭x‬‭2,‬‭x‬‭3,‬‭x‬‭4.‬‭So,‬‭what‬‭is‬‭the‬‭output‬‭of‬‭this?‬
‭So,‬ ‭that‬ ‭would‬ ‭be‬ ‭0‬ ‭for‬ ‭the‬ ‭first‬ ‭entry.‬ ‭because‬ ‭if‬ ‭1‬ ‭is‬ ‭not‬ ‭going‬ ‭to‬ ‭be‬ ‭getting‬ ‭any‬
‭information‬ ‭from‬‭anyone‬‭right,‬‭what‬‭about‬‭2?‬‭So,‬‭x1‬‭plus‬‭x3,‬‭this‬‭is‬‭going‬‭to‬‭be‬‭x1‬‭and‬
‭this is x2 plus x3.‬



‭So, let us look at what happens when we use A square. So, what is A square? You can do‬
‭the math, it turns out that A square is simply  So, this is your A square. Now, if I do A‬
‭square times x, what does this look like? So, the first entry is again going to be 0, the‬
‭second entry is x1, 0 and 2x1 plus x3. So, I mean this makes sense because you can see‬
‭that 2 is going to be receiving information from let us say here. So, 2 is going to be‬
‭receiving information from 1 and 3 and that is because of this right, this edge and then‬
‭this particular edge right.‬

‭So,‬‭you‬‭have‬‭x‬‭1‬‭and‬‭x‬‭3‬‭showing‬‭up.‬‭Likewise,‬‭4‬‭is‬‭going‬‭to‬‭be‬‭receiving‬‭information‬
‭from‬ ‭2‬ ‭and‬ ‭3‬ ‭and‬ ‭that‬ ‭is‬ ‭why‬ ‭you‬ ‭have‬‭x‬‭2‬‭and‬‭x‬‭3‬‭showing‬‭up.‬‭Why‬‭do‬‭you‬‭have‬‭x‬‭1‬
‭showing‬‭up‬‭here?‬‭for‬‭that‬‭matter‬‭x‬‭1‬‭and‬‭x‬‭3‬‭showing‬‭up‬‭here.‬‭So,‬‭if‬‭I‬‭look‬‭at‬‭the‬‭second‬
‭one right 2. So, 2 yeah.‬

‭So,‬‭in‬‭this‬‭case‬‭we‬‭have‬‭x‬‭1‬‭showing‬‭up‬‭and‬‭actually‬‭there‬‭is‬‭a‬‭2‬‭hop‬‭information‬‭flow‬
‭from‬‭1‬‭to‬‭2‬‭right.‬‭And‬‭if‬‭I‬‭look‬‭at‬ ‭the‬‭x‬‭4‬‭there‬‭is‬‭also‬‭a‬‭2‬‭hop‬‭information‬‭flow‬‭from‬‭here‬
‭and‬ ‭2‬‭hop‬‭information‬‭flow‬‭from‬‭here‬‭ok.‬‭So,‬‭that‬‭means‬‭if‬‭I‬‭do‬‭A‬‭to‬‭the‬‭k‬‭times‬‭x.‬‭So,‬
‭what‬‭I‬‭am‬‭essentially‬‭doing‬‭is‬‭I‬‭am‬‭aggregating‬‭information‬‭for‬‭my‬‭k‬‭hop‬‭neighbors‬‭or‬‭I‬
‭am‬ ‭receiving‬ ‭information‬ ‭for‬ ‭my‬ ‭k‬ ‭hop‬ ‭neighbors.‬ ‭right‬ ‭and‬ ‭that‬ ‭is‬ ‭in‬ ‭fact‬ ‭how‬ ‭the‬
‭information propagates in a graph.‬

‭So,‬ ‭the‬ ‭first‬ ‭time‬ ‭I‬ ‭do‬ ‭A‬ ‭times‬ ‭x,‬ ‭I‬ ‭basically‬ ‭receive‬ ‭information‬ ‭from‬ ‭my‬ ‭immediate‬
‭neighbors‬ ‭But‬‭in‬‭that‬‭process,‬‭the‬‭neighbors‬‭would‬‭have‬‭also‬‭received‬‭information‬‭from‬
‭their‬‭neighbors,‬‭right?‬‭So‬‭the‬‭next‬‭time‬‭when‬‭I‬‭aggregate‬‭information‬‭from‬‭my‬‭neighbors,‬
‭I'm‬‭going‬‭to‬‭be‬‭receiving‬‭the‬‭information‬‭that‬‭my‬‭neighbors‬‭have‬‭aggregated‬‭from‬‭others,‬
‭right?‬ ‭So‬ ‭essentially‬ ‭getting‬ ‭information‬ ‭from‬ ‭my‬ ‭two‬ ‭hop‬ ‭neighbors‬ ‭and‬ ‭three‬ ‭hop‬
‭neighbors‬‭and‬‭so‬‭on.‬‭So‬‭that's‬‭how‬‭the‬‭information‬‭flows‬‭in‬‭a‬‭graph‬‭and‬‭that's‬‭why‬‭when‬
‭you‬ ‭have‬ ‭a‬‭line‬‭graph,‬ ‭where‬‭you‬‭then‬‭for‬‭the‬‭information‬‭to‬‭propagate‬‭from‬‭let‬‭us‬‭say‬
‭the‬‭first‬‭node‬‭to‬‭the‬‭end‬‭node‬‭that‬‭is‬‭going‬‭to‬‭take‬‭at‬‭least‬‭10‬‭minus‬‭1‬‭steps‬‭because‬‭that‬‭is‬
‭that‬ ‭is‬ ‭the‬ ‭amount‬ ‭of‬ ‭time‬ ‭it‬ ‭is‬ ‭going‬ ‭to‬ ‭take‬ ‭to‬‭propagate‬‭information‬‭from‬‭one‬‭end‬‭to‬
‭another‬‭right.‬‭But‬‭then‬‭so‬‭if‬‭you‬‭guys‬‭are‬‭aware‬‭of‬‭something‬‭called‬‭graph‬‭convolutional‬
‭neural‬‭networks‬ ‭or‬‭if‬‭you‬‭are‬‭aware‬‭of‬‭neural‬‭networks,‬‭I‬‭mean‬‭like‬‭are‬‭you‬‭guys‬‭aware‬



‭of‬‭neural‬‭networks‬‭in‬‭general‬‭or‬‭convolutional‬‭neural‬‭networks?‬‭So,‬‭convolutional‬‭neural‬
‭network‬‭is‬‭that‬‭you‬‭aggregate‬‭information‬‭from‬‭your‬‭neighbors.‬‭So‬‭think‬‭of‬‭this‬‭particular‬
‭application‬‭as‬‭information‬‭aggregation‬‭with‬‭your‬‭one-hop‬‭neighbors,‬‭two-hop‬‭neighbors,‬
‭so‬ ‭every‬ ‭layer‬ ‭in‬ ‭fact‬ ‭A‬ ‭to‬ ‭the‬ ‭k‬‭when‬‭you‬‭say‬‭A‬‭to‬‭the‬‭kx‬‭that‬‭means‬‭there‬‭are‬‭k‬‭such‬
‭layers,‬ ‭every‬ ‭layer‬ ‭is‬ ‭aggregating‬ ‭information‬ ‭from‬ ‭one-hop‬ ‭neighbors,‬ ‭two-hop‬
‭neighbors,‬ ‭three‬ ‭hop‬ ‭neighbors‬ ‭and‬ ‭so‬ ‭on‬ ‭and‬ ‭in‬ ‭between‬ ‭you‬ ‭introduce‬ ‭some‬ ‭level‬ ‭of‬
‭non-linearity‬ ‭and‬ ‭that's‬ ‭how‬ ‭you‬ ‭make‬ ‭any‬ ‭predictions‬ ‭on‬ ‭graphs‬ ‭if‬ ‭you‬ ‭have‬ ‭graph‬
‭structured data. So that is the idea.‬

‭So,‬ ‭this‬ ‭brings‬ ‭us‬ ‭brings‬ ‭us‬ ‭to‬ ‭an‬ ‭important‬ ‭topic‬ ‭in‬ ‭the‬ ‭context‬ ‭of‬ ‭distributed‬
‭optimization‬ ‭which‬ ‭is‬ ‭consensus‬ ‭and‬ ‭by‬ ‭definition‬ ‭basically‬ ‭it‬ ‭amounts‬ ‭to‬ ‭all‬ ‭nodes‬
‭converging‬ ‭to‬ ‭a‬ ‭common‬ ‭value.‬ ‭So,‬ ‭consensus‬ ‭just‬ ‭talks‬ ‭about‬ ‭every‬ ‭node‬ ‭eventually‬
‭converging‬ ‭to‬ ‭the‬‭same‬‭common‬‭value‬‭that‬‭common‬‭value‬‭can‬‭be‬‭anything.‬‭I‬‭mean‬‭you‬
‭can‬‭like‬‭let‬‭us‬‭say‬‭all‬‭nodes‬‭can‬‭eventually‬‭converge‬‭to‬‭0‬‭being,‬‭but‬‭that‬‭may‬‭not‬‭be‬‭very‬
‭useful‬ ‭information.‬ ‭So,‬ ‭sometimes‬ ‭not‬ ‭it‬ ‭is‬ ‭not‬ ‭just‬ ‭the‬ ‭consensus‬ ‭part‬ ‭that‬ ‭we‬ ‭are‬
‭interested‬ ‭in,‬ ‭but‬ ‭we‬ ‭are‬ ‭also‬ ‭interested‬ ‭in‬ ‭something‬ ‭called‬ ‭average‬ ‭consensus.‬ ‭So‬ ‭the‬
‭idea‬ ‭is‬‭every‬‭node,‬‭so‬‭this‬‭is‬‭consensus,‬‭so‬‭every‬‭node‬‭converges‬‭to‬‭a‬‭common‬‭value‬‭so‬
‭that is there, but that common value happens to be average of all initial values.‬

‭So‬‭essentially‬‭if‬‭you‬‭have‬‭x1,‬‭x2,‬‭x3‬‭and‬‭x4‬‭as‬‭the‬‭value‬‭that‬‭every‬‭node‬‭possesses,‬ ‭and‬
‭if‬ ‭there‬ ‭are‬ ‭n‬ ‭such‬ ‭nodes.‬ ‭So,‬‭you‬‭want‬‭consensus‬‭algorithm‬‭to‬‭essentially‬‭arrive‬‭at‬‭this‬
‭particular‬ ‭common‬ ‭value.‬ ‭So,‬‭this‬‭is‬‭called‬‭average‬‭consensus‬‭ok.‬‭So,‬‭you‬‭have‬‭a‬‭belief‬
‭someone‬ ‭else‬ ‭may‬ ‭have‬ ‭a‬ ‭belief‬ ‭and‬ ‭you‬‭want‬‭to‬‭arrive‬‭at‬‭the‬‭average‬‭of‬‭all‬‭the‬‭beliefs‬
‭and‬ ‭this‬ ‭is‬ ‭what‬ ‭average‬ ‭consensus‬ ‭is‬ ‭about.‬ ‭So,‬ ‭if‬ ‭you‬ ‭remember‬ ‭the‬‭example‬‭that‬‭we‬
‭considered‬‭in‬‭the‬‭first‬‭lecture‬‭itself‬‭which‬‭was‬‭about‬‭temperature‬‭sensors‬‭being‬‭installed‬
‭and‬‭every‬ ‭every‬‭every‬‭sensor‬‭measuring‬‭temperature‬‭differently‬‭and‬‭we‬‭want‬‭to‬‭arrive‬‭at‬
‭the average of all what everyone else is measuring right.‬

‭every‬ ‭sensor‬ ‭is‬ ‭measuring‬ ‭and‬ ‭we‬ ‭looked‬ ‭at‬ ‭two‬ ‭different‬ ‭ways‬ ‭to‬ ‭run‬ ‭the‬ ‭consensus‬
‭algorithm‬‭and‬‭it‬‭so‬‭turned‬‭out‬‭that‬‭in‬‭one‬‭case‬‭we‬‭were‬‭able‬‭to‬‭arrive‬‭at‬‭consensus‬‭but‬‭it‬



‭was‬‭not‬‭the‬‭average‬‭consensus‬‭that‬‭we‬‭intended‬‭to‬‭and‬‭by‬‭choosing‬‭a‬‭different‬‭consensus‬
‭algorithm‬‭or‬‭different‬‭weighting‬‭scheme‬‭we‬‭were‬‭able‬‭to‬‭arrive‬‭at‬‭the‬‭average‬‭consensus.‬
‭So‬ ‭the‬ ‭goal‬ ‭for‬ ‭today's‬ ‭lecture‬ ‭is‬ ‭to‬ ‭understand‬ ‭the‬ ‭conditions‬ ‭under‬ ‭which‬ ‭you,‬ ‭so‬
‭conditions‬ ‭under‬‭which‬‭consensus‬‭is‬‭achieved‬‭and‬‭then‬‭conditions‬‭under‬‭which‬‭average‬
‭consensus‬‭is‬‭achieved.‬‭So,‬‭you‬‭have‬‭to‬‭have‬‭certain‬‭conditions‬‭if‬‭those‬‭are‬‭satisfied‬‭then‬
‭you‬ ‭can‬ ‭guarantee‬ ‭average‬ ‭consensus,‬ ‭and‬ ‭so‬ ‭on.‬ ‭So,‬ ‭we‬ ‭are‬ ‭going‬ ‭to‬ ‭study‬ ‭those‬
‭sufficient conditions.‬

‭conditions.‬ ‭There‬ ‭are‬‭other‬‭forms‬‭of‬‭consensus‬‭that‬‭you‬‭may‬‭often‬‭find‬‭in‬‭other‬‭papers‬
‭which‬‭are‬‭max‬‭consensus‬‭or‬‭min‬‭consensus.‬‭And‬‭as‬‭the‬‭name‬‭suggests,‬ ‭Every‬‭agent‬‭tries‬
‭to‬‭arrive‬‭at‬‭the‬‭max‬‭of‬‭the‬‭values‬‭that‬‭like‬‭every‬‭agent‬‭in‬‭the‬‭network‬‭processes,‬‭right.‬‭So,‬
‭let‬‭us‬‭say‬‭you‬‭have‬‭a‬‭graph‬‭which‬‭looks‬‭something‬‭like‬‭this.‬‭And‬‭agent‬‭1‬‭has‬‭a‬‭value‬‭t1,‬
‭t2,‬‭t3,‬‭t4,‬‭t5‬‭and‬‭t6.‬‭So,‬‭the‬‭objective‬‭of‬‭max‬‭consensus‬‭is‬‭that‬‭every‬‭agent‬‭is‬‭able‬‭to‬‭arrive‬
‭at‬ ‭the‬ ‭max‬ ‭of‬ ‭all‬ ‭these‬ ‭values‬ ‭t1,‬ ‭t2,‬ ‭t3‬ ‭So,‬‭can‬‭you‬‭think‬‭of‬‭an‬‭algorithm‬‭which‬‭does‬
‭that? So, let us say I want to achieve this max consensus in this particular graph.‬

‭So,‬‭what‬‭kind‬‭of‬‭algorithm‬‭would‬‭a‬‭very‬‭simple‬‭algorithm‬‭that‬‭you‬‭can‬‭think‬‭of‬‭that‬‭can‬
‭achieve‬ ‭max‬ ‭consensus‬ ‭or‬ ‭min‬ ‭consensus‬ ‭for‬ ‭that‬ ‭matter.‬ ‭Again‬ ‭agents‬ ‭can‬ ‭only‬
‭communicate‬‭with‬‭their‬‭neighbors‬‭right.‬‭So,‬‭that‬‭is‬‭that‬‭is‬‭one‬‭of‬‭the‬‭constraints‬‭that‬‭the‬
‭agents‬ ‭have.‬ ‭It‬ ‭is‬ ‭very‬ ‭simple‬ ‭yeah.‬ ‭So,‬ ‭every‬ ‭agent‬ ‭just‬ ‭exchanges‬ ‭information‬ ‭and‬
‭basically‬‭replaces‬‭its‬‭current‬‭value‬‭with‬‭the‬‭max‬‭of‬‭whatever‬‭information‬‭it‬‭has‬‭received‬
‭from its neighbors right.‬

‭And‬ ‭that‬ ‭would‬ ‭and‬ ‭just‬ ‭replaces‬ ‭its‬ ‭current‬ ‭state‬ ‭with‬ ‭the‬ ‭max‬ ‭of‬ ‭its‬ ‭current‬ ‭and‬ ‭its‬
‭neighbor‬‭state‬‭right.‬‭So,‬‭agent‬‭i.‬‭So,‬‭Ti‬‭k‬‭plus‬‭1‬‭is‬‭simply‬‭going‬‭to‬‭be‬‭max‬‭of‬‭Ti‬‭k‬ ‭and‬‭Tj‬
‭k‬‭for‬‭every‬‭j‬‭in‬‭the‬‭neighbor‬‭would‬‭certify‬‭right.‬‭So,‬‭every‬‭agent‬‭runs‬‭this‬‭and‬‭how‬‭in‬‭how‬
‭many‬‭steps‬‭is‬‭it‬‭guaranteed‬‭to‬‭converge?‬‭Yeah,‬‭so‬‭the‬‭diameter‬‭of‬‭the‬‭graph‬‭right.‬‭So,‬‭if‬
‭diameter‬ ‭of‬ ‭the‬ ‭graph‬ ‭is‬ ‭d‬ ‭is‬ ‭the‬ ‭graph‬ ‭diameter‬ ‭then‬ ‭this‬ ‭algorithm‬ ‭converges‬ ‭in‬ ‭in‬ ‭d‬
‭steps ok.‬



‭That‬ ‭may‬ ‭not‬ ‭be‬ ‭the‬ ‭case‬ ‭with‬ ‭the‬ ‭with‬ ‭the‬ ‭other‬ ‭can‬ ‭like‬ ‭asymptotic‬ ‭or‬ ‭the‬ ‭average‬
‭consensus‬ ‭things‬ ‭that‬ ‭we‬ ‭algorithms‬ ‭that‬ ‭we‬ ‭are‬ ‭going‬ ‭to‬ ‭talk‬ ‭about.‬ ‭There‬ ‭is‬‭an‬‭naive‬
‭way‬‭to‬‭let‬‭us‬‭say‬‭obtain‬‭average‬‭consensus‬‭is‬‭that‬‭you‬‭have‬‭you‬‭run‬‭the‬‭max‬‭consensus‬‭I‬
‭mean‬‭you‬‭also.‬‭So,‬‭essentially‬‭you‬‭are‬‭going‬‭to‬‭be‬‭storing‬‭the‬‭max‬‭value,‬‭but‬‭then‬‭at‬‭the‬
‭same‬‭time‬‭you‬‭also‬‭have‬‭a‬‭copy‬‭of‬‭your‬‭current‬‭value‬‭right.‬‭So,‬‭in‬‭the‬‭first‬‭d‬‭step‬‭you‬‭are‬
‭going to be storing the max value.‬

‭in‬ ‭the‬ ‭second‬‭d‬‭steps‬‭you‬‭are‬‭going‬‭to‬‭be‬‭storing‬‭the‬‭second‬‭largest‬‭value‬‭and‬‭the‬‭third‬
‭largest‬‭value‬‭and‬‭the‬‭fourth‬‭largest‬‭value‬‭and‬‭so‬‭on.‬‭So‬‭that‬‭means‬‭in‬‭n‬‭times‬‭d‬‭steps‬‭right‬
‭you‬‭would‬‭have‬‭essentially‬‭all‬‭the‬‭values‬‭known‬‭and‬‭then‬‭you‬‭just‬‭take‬‭the‬‭average‬‭of‬‭it‬
‭and‬ ‭that‬ ‭is‬ ‭also‬ ‭going‬ ‭to‬ ‭give‬ ‭you‬ ‭the‬ ‭average‬ ‭consensus.‬ ‭So‬ ‭that‬ ‭is‬ ‭a‬ ‭naive‬‭way‬‭to‬‭go‬
‭about‬‭it‬‭and‬‭in‬‭fact‬‭in‬‭a‬‭finite‬‭number‬‭of‬‭steps‬‭you‬‭are‬‭guaranteed‬‭to‬‭get‬‭the‬‭exact‬‭average‬
‭consensus‬ ‭value,‬‭but‬‭that‬‭is‬‭not‬‭the‬‭kind‬‭of‬‭algorithm‬‭that‬‭we‬‭are‬‭going‬‭to‬‭be‬‭looking‬‭at‬
‭because‬ ‭if‬ ‭the‬ ‭graph‬ ‭diameter‬ ‭is‬ ‭large‬ ‭you‬ ‭do‬ ‭not‬ ‭want‬ ‭and‬ ‭if‬ ‭or‬ ‭let‬ ‭us‬ ‭say‬ ‭the‬ ‭graph‬
‭diameter‬ ‭is‬ ‭also‬ ‭small,‬ ‭but‬ ‭if‬ ‭number‬ ‭of‬ ‭agents‬ ‭is‬ ‭very‬ ‭large‬‭you‬‭cannot‬‭just‬‭wait‬‭for‬‭n‬
‭times‬‭t‬‭steps‬‭right.‬‭So‬‭that‬‭is‬‭so‬‭we‬‭would‬‭want‬‭to‬‭avoid‬‭this‬‭kind‬‭of‬‭naive‬‭way‬‭to.‬‭obtain‬
‭average consensus or the consensus.‬

‭So,‬ ‭this‬ ‭kind‬ ‭of‬ ‭scheme‬ ‭is‬ ‭often‬ ‭used‬ ‭consensus‬ ‭often‬ ‭used‬ ‭in‬ ‭opinion‬ ‭dynamics‬ ‭as‬ ‭I‬
‭mentioned‬ ‭that‬ ‭you‬ ‭have‬ ‭certain‬ ‭beliefs,‬ ‭your‬ ‭neighbors‬ ‭may‬ ‭have‬ ‭certain‬ ‭like‬ ‭some‬
‭other‬ ‭beliefs‬ ‭and‬ ‭you‬ ‭want‬ ‭to‬ ‭maybe‬ ‭obtain‬ ‭like‬ ‭the‬ ‭consensus‬ ‭of‬ ‭all‬ ‭the‬ ‭beliefs‬ ‭right.‬
‭Let's‬‭say‬‭I‬‭mean‬‭you‬‭vote‬‭for‬‭one‬‭particular‬‭party,‬‭your‬‭friend‬‭votes‬‭for‬‭some‬‭other‬‭party‬
‭and‬‭so‬‭on‬‭right‬‭and‬‭you‬‭want‬‭to‬‭see‬‭where‬‭the‬‭average‬‭trend‬‭is‬‭going‬‭on.‬‭So,‬‭that‬‭this‬‭is‬
‭where‬ ‭the‬ ‭average‬ ‭consensus‬ ‭or‬ ‭the‬ ‭consensus‬ ‭models‬ ‭really‬ ‭help‬ ‭you‬ ‭with.‬‭So,‬‭in‬‭this‬
‭context‬ ‭you‬ ‭have‬ ‭the‬ ‭French‬ ‭Harary‬ ‭De‬ ‭Groot‬ ‭dynamics‬ ‭model,‬ ‭opinion‬ ‭dynamics‬ ‭ok.‬
‭And‬‭the‬‭way‬‭it‬‭works‬‭is‬‭that‬‭your‬‭opinion‬‭at‬‭time‬‭t‬‭plus‬‭1‬‭or‬‭a‬‭step‬‭k‬‭plus‬‭1,‬‭the‬‭dynamics‬
‭essentially  say there are n agents in the network a ij where such that ok.‬

‭And‬‭let‬‭and‬‭a‬‭ii‬‭is‬‭nothing,‬‭but‬‭the‬‭relative‬‭like‬‭relative‬‭importance‬‭to‬‭its‬‭own‬‭belief‬ ‭So,‬
‭what‬‭let‬‭us‬‭let‬‭us‬‭look‬‭at‬‭this‬‭dynamics‬‭in‬‭sort‬‭of‬‭more‬‭detail.‬‭So,‬‭aij‬‭potentially‬‭can‬‭be‬‭0‬
‭that‬‭means‬‭j‬‭is‬‭not‬‭a‬‭neighbor‬‭of‬‭i‬‭right,‬‭but‬‭if‬‭they‬‭are‬‭non-zero‬‭then‬‭you‬‭look‬‭at‬‭the‬‭your‬
‭neighbors‬‭belief‬‭and‬‭you‬‭essentially‬‭do‬‭a‬‭weighted‬‭average‬‭of‬‭those‬‭neighbors‬‭belief‬‭and‬
‭this‬ ‭is‬ ‭your‬ ‭current‬ ‭belief‬ ‭now‬ ‭ok‬ ‭and‬ ‭then‬‭you‬‭sort‬‭of‬‭run‬‭it‬‭multiple‬‭times.‬‭So,‬‭if‬‭you‬



‭look‬‭at‬‭the‬‭dynamics‬‭of‬‭this,‬‭this‬‭is‬‭nothing,‬‭but‬‭p‬‭of‬‭t‬‭plus‬‭1‬‭is‬‭the‬ ‭is‬‭essentially‬‭A‬‭times‬
‭p‬ ‭of‬ ‭t,‬ ‭where‬ ‭A‬ ‭is‬ ‭the‬ ‭adjacency‬ ‭matrix‬ ‭of‬ ‭the‬ ‭graph‬ ‭and‬ ‭this‬ ‭time‬ ‭it‬ ‭is‬ ‭going‬ ‭to‬ ‭be‬ ‭a‬
‭weighted‬ ‭graph,‬ ‭okay.‬‭So,‬‭what‬‭property‬‭does‬‭A‬‭have‬‭here,‬‭this‬‭matrix‬‭A?‬‭So,‬‭A‬‭is‬‭row‬
‭stochastic, right. So, that means the row sum is 1.‬

‭So,‬ ‭A‬‭is‬‭row‬‭stochastic,‬‭row‬‭sum‬‭is‬‭1.‬‭So,‬‭does‬‭row‬‭stochastic‬‭A‬‭guarantee‬‭consensus?‬
‭So,‬‭that‬‭is‬‭the‬‭first‬‭question‬‭that‬‭we‬‭are‬‭going‬‭to‬‭look‬‭at‬‭and‬‭the‬‭second‬‭question‬‭is‬‭does‬
‭row‬ ‭stocastic‬ ‭A‬ ‭guarantee‬ ‭average‬ ‭consensus‬ ‭ok.‬ ‭So,‬ ‭what‬ ‭do‬ ‭you‬ ‭think‬ ‭the‬ ‭answer‬
‭should‬‭be‬‭for‬‭both‬‭these‬‭questions.‬‭So,‬‭p‬‭of‬‭t‬‭plus‬‭1‬‭is‬‭essentially‬‭A‬‭to‬‭the‬ ‭p‬‭of‬‭t‬‭plus‬‭1‬‭let‬
‭us‬‭say‬‭p‬‭0‬‭right‬‭ok.‬‭So,‬‭what‬‭do‬‭we‬‭know‬‭about‬‭A?‬‭A‬‭is‬‭row‬‭stochastic‬‭meaning‬‭A‬‭times‬
‭if I look at vector of all 1's this is going to give you vector of all 1's right.‬

‭Let us call it let us say they are n agents. So, this is what it is going to give you. So, that‬
‭means this vector of all 1's is is an eigenvector of  A with eigenvalue also equal to 1 . So,‬
‭as long as  as long as the eigenvalues of other eigenvalues of A are strictly smaller than 1‬
‭or let us say smaller than 1 ok or less than equal to 1 that means your opinions are I mean‬
‭not diverging right as you run this multiple times as you make a to the t plus 1 as you are‬
‭exponentiating it further and further So, I mean think of it in the scalar case right, let us‬
‭say if it is just a scalar case if it I mean eigenvalue less than 1 or less than equal to 1‬
‭means that you are not sort of diverging the beliefs with every iteration right. So, then‬



‭you can hope that in fact this would arrive at consensus.‬

‭So, with row stochastic A you can guarantee consensus. So, this is true, but with row‬
‭stochastic A you can you need not I mean you would not be able to guarantee average‬
‭consensus. So, this is not true. in general I mean it is possible, but it is not true in general‬
‭ok. So, let us let us revisit the example that we looked at in the first lecture.  So, it is a‬
‭simple setting that we are looking at. So, you have a graph in this case you have 4‬
‭different values. So, there are 4 different sensors each measuring temperature. So, one of‬
‭them is one of the sensors measures 25 Celsius, 20, 24 and 27. and the goal is to arrive at‬
‭average consensus.  So, average of these senses right and the connectivity that we have is‬
‭1 is connected to 2 and vice versa, 2 is connected to all the senses, 3 is connected to 2, 3,‬
‭2 and 4 and 4 is again connected to 2 and 3. So, that is the connectivity that we have‬
‭right. So, if I consider this particular adjacency matrix A 1 and I run this algorithm.‬

‭So, basically essentially doing A times x and then we are just kind of repeating this over‬
‭right. So, we see that it eventually arrives at a consensus value, but then it is not the‬
‭average consensus, the average value is 24 whereas this arrives at something at 23.‬



‭5 it is something right. And if you look at the matrix A, so is this row stochastic? Yes‬
‭right. So, it is row stochastic. So, consensus I mean you see the consensus happening, but‬
‭there is no average consensus. But if I change my A to be to look something I mean‬
‭which looks something like this now right.‬

‭So, again it is row stochastic and it is not just row stochastic it is something else as well.‬
‭It is symmetric as well right and this also makes it column stochastic. So, if I run this‬
‭with this particular choice of A you see that eventually they arrive at the consensus value‬
‭right ok. So, which is the average consensus value which is 24.‬

‭And so, in this lecture we are going to look at the theory behind it as to why doubly‬
‭stochastic matrix or the basically guarantees you average consensus, ok. So, the point that‬
‭we are trying to make here is, so not all A that are row stochastic,  will lead to average‬
‭consensus.‬

‭So, basically what do we want? We want that x k plus 1 which is essentially A to the A‬
‭times x k. So, we have or another way to write this is A to the k plus 1 times x naught.‬
‭So, we want limit k goes to infinity. x k is essentially goes to summation this is what we‬
‭want. So, we want that all agents they converge to this common value.‬



‭So, for this we would need a little very brief refresher on linear algebra. So, let us briefly‬
‭revisit linear algebra to be able to understand this in more detail. So, everyone here had‬
‭has had some course on linear algebra. So, similarity transformation, diagonalizability is‬
‭that ok with everyone.‬

‭So, we will just quickly recap this. So, what is similarity transformation of? So, if a‬
‭matrix A, so what do you mean by similarity transformation? So, which is? So,‬
‭something like this right PJP inverse right. So, we say so, square matrices first of all A‬
‭and J they need to be square matrices right. So, in fact p and p and p as well. So, A and J‬
‭are similar if they can be related using this particular transformation ok.‬

‭So, if J happens to be a diagonal matrix, then we say that A is diagonalizable.‬
‭We will come to that P part. So, what is what could be a good choice for P and J? So,‬
‭how do we choose P and J here? So, let us say you have let us say A has n different‬
‭eigenvalues eigenvector pairs. So,  A is n cross n and it has these eigenvectors eigenvalue‬
‭pairs right. So, we know that A v 1 for instance is lambda 1 v 1, A v 2 is lambda 2 v 2‬
‭and so on. And for now let us just assume that lambda 1 through lambda n are different‬
‭ok. So, I can write this as A times v 1 v n  ok.‬



‭And this you can call the J, this is your P and you can write this as P J P inverse.‬

‭If you have n different eigenvalues and n different eigenvector pairs, they are going to be‬
‭linearly independent, P inverse exists and therefore you can write A as P J P inverse ok.‬
‭So, we assume obviously A has distinct  also let us say simple eigenvalues. So fact one,‬
‭so we are going to be here. So the fact one is, so a real, by the way when we talk about‬
‭doubly stochastic it is going to be a symmetric matrix.‬

‭So one of the facts is that a real symmetric matrix  has real eigenvalues and is also‬
‭diagonalizable ok. So, when we talk about let us say in something like identity matrix‬
‭which is let us say 3 by 3  So, what are the eigenvalues of this matrix? So, all all eigen‬
‭like so eigenvalues are essentially I mean there is just one eigenvalue right, but what are‬
‭the eigenvectors? So, what is what is the definition of an eigenvector? So, how do you‬
‭find the eigenvector if you know the eigenvalue? Null space of A minus lambda I right.‬
‭So, null space of  A minus A in this case a is I simply identity. So, identity minus identity‬
‭right which is a 0 matrix right. So, essentially in fact these three columns are the‬
‭eigenvectors.‬



‭So, even though you have one eigenvalue you have distinct eigenvectors right. So,‬
‭whereas if you consider an example which looks something like this. Let us say 5 this‬
‭particular matrix 5 4 2 1, 0 1 minus 1. So, how do we find the eigenvalues of a matrix?‬
‭Just set the determinant of A minus lambda, just find the characteristic equation. set it to‬
‭0 and it would it turns out that the Eigen basically the characteristic equation is given by‬
‭lambda 1 minus lambda minus 2 lambda minus 4 whole square equal to 0.‬

‭Now, the repeated Eigen value is lambda equal to 4 right and it turns out that if I try to‬
‭find the null space of a minus 4 identity like if I try to find a vector p such that this is‬
‭equal to 0. unlike in the previous case where I actually get three different vectors even‬
‭with in this case I am going to get just one vector. I mean plus and minus the scale‬
‭scaling, but I am going to get just one vector right. So, then what do we do? Square what?‬
‭So, what is it called? So, let us say I get p.‬

‭So, p 3 is my p 3 is an eigenvector. corresponding to 4, eigenvalue 4. So then what do we‬
‭do? So we find P4 such that this is equal to P3. So this is called generalized eigenvector.‬
‭which is same as I mean if I multiply this by A minus 4 I times identity then this is equal‬
‭to 0.‬



‭So, essentially you square it and try to find it. So, when we try to diagonalize this kind‬
‭of, so first in this case this a is not diagonalizable, it is not perfectly diagonalizable, but it‬
‭is I mean it can be approximately diagonalized using something called  Jordan blocks‬
‭right, is everyone familiar with Jordan blocks? No, ok. So, Jordan blocks are the like. So,‬
‭essentially in this case J would look something like this. So, for all the eigenvectors for‬
‭all the simple eigenvalues which have which do not have this multiplicity.‬

‭So, which in this case are 1 and 2. So, you would get something like this, but for the‬
‭other one  I mean technically if the matrix was diagonalizable this is what I mean you‬
‭would have gotten zeros over here, but you get a 1 here and this is. So, you get a Jordan‬
‭block. So, Jordan block J is essentially lambda i. So, in this case it is a 2 by 2 Jordan‬
‭block lambda i 2 plus 2 plus a nil potent matrix.‬

‭So, this is this is a Jordan block here. So, if let us say let us say we were talking about 5‬
‭by 5 matrix dimensional matrix A and let us say 4 was repeated 3 times and still I mean‬
‭and there was just one distinct eigenvector, then that means there are two generalized‬
‭eigenvectors and you would have gotten this to be your Jordan block ok. So, again A plus‬
‭lambda I plus n the Jordan the nilpotent matrix. But the point is if using these P 1 through‬
‭P 4, so if I use P J P inverse with this being your J, you can still write A in terms of P like‬
‭using similarity transformation as P J P inverse where J is not perfectly diagonal, but‬
‭approximately diagonal. Thank you.‬




