
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-8

Lecture 26: Basics of Graph Theory

So, now we are going to be shifting gears a little bit and also look at some I mean in
basics of graph theory because eventually when we are going to be establishing the
network in the context of distributed optimization that is when graph theory like tools
from graph theory would be very useful ok. So, why do we care about basics of graph
theory? So, a typical distributed optimization problem is of this form. So, let us say we
want to solve the centralized problem and for now let us also assume that the problem is
unconstrained. So, we want to minimize this function f of x and this f of x is basically
nothing, but So, it is made up of several decomposable functions f i and you can think
that there is a I mean there are different agents or different entities in the network which
are essentially trying to minimize the sum of their objective function. This is and a
particular example can be when we try and let us say when you train a neural network
right you try and minimize the loss function over your own data sample right. So, f i of x
essentially in that case or let me not use f at x here.

So, f i for instance can be defined as when you say I want to minimize the mismatch
between the predicted values and the true values for the ith agent and this is this needs to
be done over all the data points that ith agent. So, for all x y sample from data set d i.
right. So, even though it is the same objective function analytically, but because it is
evaluated on different points, every agent has its own fi right.

And if you want to have a centralized update of the neural network, then ideally what
you want is you want to compute the gradient of summation of fi. right before you can
update the weights of the neural network. So, this kind of objective function is pretty
common minimize the sum of and we are going to largely focus on functions that that
either that are either convex strongly convex or basically for these f i's or function that
satisfy PL inequality something that we have already looked at. So, the objective is to
minimize the sum of these objective functions right where every individual entity has got
its own objective function But the challenge is I do not know anything about your dataset
or basically your own objective function. So, I can find basically an unconstrained



minimizer of my own objective, but that may be very different from what you end up
finding on your own data.

And then what is a good value? I mean a good value is something that basically works
for all the agents and not just for me or just for you. So, there must be some kind of
consensus between the solution that I end up finding and you end up finding or anyone or
for that matter anyone in the network ends up finding right. So, for what we are basically
trying to say is there will be one x star that basically minimizes this. However, this cannot
be achieved because f i is not known to everyone. So, we look at an equivalent problem
of this form minimize So, we introduce, so every agent has its own primal variable now
x i.

So, we minimize with respect to x 1, x 2 all the way x n subject to x 1 equal to x 2. It is
the same optimization problem right, because of this particular constraint. Now the
centralized optimization problem, we can write this as sort of decentralized optimization
problem. So, everyone has its own optimal variable. So, instead of working with an x
which is in let us say R n, we now have n copies of capital N copies of x i's, all of them
are in going to be R n.

So, everyone has its own copy of what the optimal solution would look like. I am going
to be minimizing my own objective function, but at the same time I am also going to keep
a track on what you are doing, you as my neighbor is basically arriving at and that will
give me an idea about how everyone else is evolving. And that way you can try and
arrive at this x star. So, the goal is eventually all these x i's will converge to x star. And if
that happens then we are trying to solve the same optimization problem in a rather
distributed fashion.

Distributed because this computation is going to be distributed at each edge. So, you can
exchange certain information. So, for instance you can exchange your current x i with



your neighbors or you can maybe exchange the gradient of your f i with your neighbors at
any iteration, but you have your own private objective function. So, f i's are private.

Yeah. So, as I said like you have your own data to work with right. So, you do not want
to reveal your private data to any of your like neighbors that way. Yeah, it has to be
something has to be conveyed otherwise you cannot achieve that. But then that means I
know about your. No, but then it is like I have a computer, you have a computer, I have
my own data set, you have your own data set.

So, we are doing computations. It is a same dimensional vector and dimensional vector
that we have both of us are working with. You are computing gradient on your data set, I
am computing gradient on my data set and we are just going to be exchanging what the
gradients may look like or let us say what the if I were to use my gradient to update the
neural network, what do my weights look like and your weight like what you are going to
be arriving at and we are exchanging that kind of information. So, it is not like I am going
to be computing for everyone else's in the like everyone else's we have on the network
right. I am just going to be exchange like computing on my data like gradient on my data
set and just exchanging the information with the neighbors.

So, the additional overhead that you get is in terms of communication exchange right
and, but that has to be there even with the ADMM or the dual decomposition we had this
information exchange either with the centralized aggregator or either I mean or with the
neighboring agents right. So, that information sharing has to be there, but it would not be
directly about the f i's. So, the kind of setup that you have is usually. So, in this context
we are going to study graphs and typically this is one particular schematic. Let us say this
is something like this.

So, these black entries are called. So, nodes. So, we are going to be using either nodes,
vertices, agents. So, all these terms we are going to be using interchangeably. So, that and
in this.

So, let us let us number these right 1, 2, 3, 4. So, 2 is a neighbor of 1 ok. So 2 lies in the
neighborhood set of 1. So the neighborhood set, so n sub i, this cursive n sub i, this is the
neighborhood set of agent i. And what are these quantities here? These are edges right.

edges or connections between different nodes. And our presence of edge would indicate
that in this case for instance agent 1 can exchange information with agent 2 and vice
versa, but 1 cannot for there is no edge between 1 and 3. So, 1 cannot exchange
information with 3 ok. So, that is the idea behind placing these edges. So, edges indicate
connectivity between different nodes.



This is an example of undirected graph, but I mean for most of this course we are going
to be focusing on undirected graphs, but you will I mean there are results which also
extend for directed and weighted graphs and things like that. So, what is an undirected
graph? So, when there is no specific directionality between 1 and 2. So, for instance, so
this is an example of undirected and weighted graphs. So, I will tell you what these terms
represent. So, undirected because there is no directed edge bit from 1 and 2.

So, it is not like 1 can exchange information with 2, but 2 cannot exchange it with 1. So,
had there been such kind of directionality, then it would have become directed graphs.
unweighted because I mean so we in some sense we are just going to indicate the
presence and the absence of the edges between the nodes, but sometimes we also want to
indicate the weights of these edges. So, if you remember the first example about the
temperature measurement that we looked at right. So, every agent updated its value based
on the averaging of all other agents in the network.

So, in that case agent 1 for instance is going to place a weight to this particular edge and
using that weight it is going to receive its information right. So, there can be let us call it
a 1 2 ok. So, a 1 2 I mean if it is unweighted graph we just say that a 1 2 is equal to 1 if
there is an edge it is 0 otherwise right. So, aij is going to be 1 if there exists an edge
between i and j and its 0 else. But sometimes you can have certain weights of these
edges and in that case aij would have would be a number let us say 0.



5, 0.3 things like that. So, even if there is an edge you are not going to be assuming it to
be just binary kind of quantity, but there is also an edge. So, in that case you would say
that it is an undirected weighted graph. So, the set of vertices we are going to be denoted
we are going to be denoting this by this capital calligraphic V. So, this is the set of
vertices which in this case is 1, 2, 3, 4, 5, 6 and all the set of edges we are going to be
denoting this by this capital V. Is everyone ok with the notations? So, n sub i again is the
neighborhood set of agent i.

So, what is the neighborhood set of agent 2? In this example 1, 3 and 4 right ok. So, that
means 2 can exchange information with 1, 3 and 4 and so on. So, as I said I mean there is
also you can have some in certain cases you can have directionality between these edges.
So, if I consider the same example, but this time we also have certain kind of
directionality. So, you can you can assume that 1 can exchange information with 2, but
then 2 would not be able to exchange information with 1 and so on.

So, these kind of graphs are called directed graphs. And they basically indicate the flow
of information and the flow of information is not bidirectional, it is going to be in one
particular direction. And if you also have weights on top of these edges, so it is called
directed weighted graphs or there is a better term called digraphs. which is basically for
directed weighted graphs. But for the interest of this course we are just going to be
largely we are going to be focusing on undirected graphs.

Most of the results that are there for undirected graphs with slight bit of modification you
can extend this to directed graphs. So, I think it is much easier to understand it through
undirected and weighted graphs in most cases. So, in this case, so what is the difference
between? So, let us say if I have a graph which looks something like this. So, what can
you conclude about this kind of graph? This is one graph by the way.



So the graph is not connected. So what do you mean by connected? So what do you
mean by connected? So there must exist a path from one node to any other node. So
basically I can reach from 1 to 2, I can reach from 1 to 3, I can reach from 2 to 3, but I
cannot reach from 1 to 4. So, a graph is connected if there exists a path between any pair
of nodes. So, is this graph connected the one over here that is connected right you can
reach from one node to any other node. So, this graph is connected while this one is not
ok this graph is not connected ok.

So, why is connectedness important in let us say in the context of distributed
optimization why do you think connectedness is important. So, when we are trying to
exchange let us say our estimates of what this x star looks like. So, agent 1 would have its
own estimate x 1, 2 would have its own estimate x 2 and x 3 and so on. But we would not
be able to know what the other part of the network is basically arriving at if there is no
connection. So, connectedness is important in most cases at least I mean in some form
connectedness is important.

It may not always be connected at all times, but like let us say on an average over a
period of let us say 10 time points, there should exist a path for you to be able to go from
one node to another. So, you need some kind of connectedness to be able to exchange
information within the entire network that is one thing. So, these individual subgraphs.
So, this is these are called subgraphs by the way and these subgraphs are called connected
components of a graph ok. So, in this case, there are two connected components in this
graph.

If the graph is connected, then there is just one connected component. What about this
graph? Is this graph connected? So, is this graph connected? Let me also number these so



that it is also clear. is this graph connected why or why not yeah you cannot go from two
to one for instance So, in the directed setting the definition of connectedness has to go
beyond just having an edge right. It is in fact about having a directed edge. So, there
should always exist a path for you to be able to go from point a node like node i to a node
j and if it is possible for every pair i j then it is a connected.

So, in the context of directed graphs we define something called strongly connectedness
or strong connectedness. So, not just not just that the entire the underlying undirected
graph needs to be connected. I mean the connectivity should be there through these
directions. So, we call it a strongly connected. So, you can reach from any node to any
other node using these directed edges.

I mean, we do not even talk about the connectedness in that case, we just talk about
strongly connectedness of the strong connectedness. This is not here. So, this graph is not
this graph. is not strong ok. So, the next thing is next important concept is degree of a
node.

So, again if I consider the same example. So, what is degree of a node in a graph? Yeah,
number of connections are basically size of the neighborhood set. So, degree of the first
node is let us say 1. So, d sub i is basically size of the neighborhood set. d 2 is 3, d 3 is 2.
So, based on this degree we can also define something called degree matrix of a graph,
which is basically a diagonal matrix with the diagonal entries being d y.

So, degree matrix of a graph, so in this case capital D is going to be 1, 3, 2, 4, 1, 1 across
the diagonals and everywhere else 0. It is a diagonal matrix of the degrees of the nodes.
How do we define degree for, now let us say we have a directed graph. what is degree of
1? So, how do we define degree of a directed graph? Yeah, so we in fact have a notion of
in degree and out degree.



So, in degree and out degree. So, in degree would be number of incoming connections
and out degree would be number of outgoing connections from a particular node. So, d in
1 in this case is 0. but d out 1 is essentially 1 and so on. So, then we have this notion of
edge adjacency matrix. So, what is the adjacency matrix of a graph? So, basically it
denotes the connection between any two nodes and in case of this undirected graph for
instance 1 is connected to 2 right.

So, first of all there are no self edges. So, that means all the diagonal entries are going to
be 0. So, 1 is connected to 2 and likewise 2 is also connected to 1 right. So, you can see
for undirected graph this adjacency matrix is going to be symmetric ok. So, 1 is
connected to 2, 2 is connected to 3, basically 1, 3 and 4, 1, 3 and 4, then 3 is connected to
essentially 2, 4, 4 is connected to 2, 3, 5 and 6, 4 is connected to 2, 5 and 6 and 5 is
connected to 4 and 6 is also connected to 4 everywhere else at 0 and this is your this is
your adjacency matrix ok.

So, for each i. So, we are going to be denoting as I said we have this thing a i j right a i j
is going to be. So, every element of this adjacency matrix is a i j. So, for each i what is
what is this quantity? Yeah.

So, d sub i right. So, it is basically degree. So, the row sum in fact because this matrix is



symmetric the row sum or the column sum both are in fact the degree of the degree of
that node. So, this is the degree of node. Thank you.


