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Lecture - 23: Method of Multiplers

In the first few lectures we started with the unconstrained optimization and then we in
the last lecture we kind of looked at constrained optimization and that too using
augmented Lagrangian right. So, just to briefly recap. So we are looking at problems of
the form. And what did we construct in order to solve this? So we looked at something
called augmented Lagrangian. which was of the form. Let us say you have the current
value.

So, essentially you construct a Lagrangian. Let me call it C which looks something like
this. we looked at the convergence mechanism this augmented Lagrangian methods or
method of multipliers. So, if we if nu goes to nu star the nu star is the like if you look
consider the original Lagrangian nu star is the optimal dual variable for the equality
constraint.

If nu goes to close is close to nu star and c goes to infinity right. Then you can show that
x that minimizes this augmented Lagrangian would actually go close to x star right. So,
that was the idea and the reason we add this particular term over here is because we want
to regularize the landscape, we want to make it much smoother potentially convert non
convex problem into convex problem and so on. So, today we are going to be looking at I
mean sort of looking at the algorithm I mean last time we sort of discussed the
convergence mechanism, but today we are going to be looking at the algorithm. which is
the and then that would also lead to something called eventually something called dual
decomposition.



And through dual decomposition we would then be introduced to this alternating
direction method of multipliers ok alright. So, how does this algorithm work? So, let us
say we are at iteration k. we are looking at method of multipliers ok. So, we are at
iteration k and at kth iteration you define you find your x k which is essentially arg min
ok. So, x k is essentially the arg min of So, so far we know that we can solve
unconstrained optimization problem relatively easily using either gradient descent or
heavy ball or other things right.

So, we are going to run and we are basically going to solve or basically minimize the
unconstrained Lagrangian which is in fact unconstrained augmented Lagrangian right.
So, given the value of nu k the current value of nu k and the current value of this constant
c k or the coefficient c k we are going to find our x k. then we are going to be updating nu
k plus 1 using ok. So, this is how we will be updating nu k plus 1. So the hope is that this
eventually converges to new star right that is when your x would also converge x k would
converge to x star.

So if this converges to new star then this would converge to x star right that is the idea
and in order to do so we also need to ensure that c also becomes very large right. So that
means we would also be updating our c like this where beta is than 1 and typically beta
is I mean and there is no particular rule, but typically beta is chosen to be a number
between 5 and 10. So, this is your algorithm ok, this is the this is your algorithm and let
us try and see how why this particular choice of nu k plus 1 and so on ok. Are the steps of
the algorithm clear? What happens at kth iteration? So, this way you update your new
iterates and in the next iteration k plus 1 then you would find x k plus 1 using the c k plus
1 that you have obtained or updated and the new k plus 1. So, there you are going to be
running gradients.

So, so far we know that we can solve unconstrained minimization problem right
unconstrained optimization. I mean obviously, here we are assuming that we can solve it



exactly, but I mean the results exist where even if you solve it approximately still works it
is. Yeah, yeah, but satisfy I mean satisfiability of constraint is important here right. Sir, if
you have the x k. So, you will be at one of the local minima's, but the I mean if you can
still I mean.

So, again assuming nu goes to nu star and c goes to infinity you would be able to do so.
So, we will come at an example where you would you would see that that to like I mean
you will see that in action. It will be again like you can only provide local guarantees. So,
you it will converge to one of the local as I said like if it is a non convex function with
the multiple with multiple local minima in general it is it is impossible to provide global
guarantees right in general right. So, we can only talk about like local guarantees there
right, but if it is if it is a different kind of stationary point or maybe a case where like I
mean PL inequality kind of non-convexity then you can I mean you can provide global
guarantees.

Sir, you can understand that we want C to be as large as possible. Yes. So, we can see by.

Yeah. Right. But how do we know that the second one. Yeah. So, that is what I was I am
going to come to. So, what is the Lagrangian at C k x nu k. So, that is f of x k.

plus nu k transpose h of x sorry there is no x k ok. If you want to minimize this
unconstrained Lagrangian. with respect to x. So, you would set the derivative that is the
first step that is what you are trying to. So, you would want to ensure that this goes to 0
right for the given value of nu k and c k this I mean this is the first step.

No, I mean this is this is what you are trying to mean oh sorry h of x here this is what
you want. Now what is the derivative of this? If I set the derivative, this you want to set



to 0 right. May assume this is a element wise of multiplication. So, this you want to set to
0 right. So, this is coming from the augmented Lagrangian part.

Let us say you are not looking at augmented Lagrangian, you are looking at the original
Lagrangian. Suppose that is the case, you are looking at the original Lagrangian. and in
the original Lagrangian your L would be L x nu is simply f of x plus nu transpose h of x
and if I take the derivative and set it to 0 that is the stationary condition implies. So, at the
optimal point nu star right. x also needs to be optimal.

So, at the let us call it x star here we will call it x k whatever. So, we basically we want
this to go to nu star right and that is why this particular update nu k plus 1 is nu k plus c k
h of x k. Because if this goes to nu star and c goes to infinity then you know that x k
would go to x star. So, that is how this particular update for the nu k plus 1 or nu k comes
into picture. So, this is the method of multipliers or the basic algorithm again we are we
do not assume the value of we do not know the value of nu star we are just running this,
but then it would happen that this converges to nu star and if c goes to infinity then you
are done.

The other thing that you can look at from here is h of x k. So, why do you need c to go to
infinity? if you look at h of x k it is simply nu k plus 1 minus nu k divided by c k and if
you want the equality constraints to hold then you want the right hand side to be almost 0
and that happens when c k is very large right. So, this is another reason why you need c k
to go to be very large. in fact it turns out that for most convex optimization problems you
do not even need C k to be very large and in fact even for non convex problems you again
you do not need C k to be very large as long as it is above certain threshold this would
work ok. So, let me write down one particular result we are not going to prove this, but it
is a proposition.

So, let f and h are continuous functions and continuous functions and the constraint set
is non-MP. So, for k equals 0, 1, so on let x k be the global minimum of the optimization
of the following optimization follow. subject to x k. So, where nu k is the sequence nu k
is bounded and 0 less than c k less than c for all k with c k going to infinity. So, then
every limit point of the sequence is a global minimum of the original problem.



So, as long as your sequence nu k is bounded for every k and you have the strict
monotonicity in your c k's with c k going to infinity then this basically sequence x k
converges to x star is what it says ok. So, this is the in fact this is the result that kind of
that you can use to essentially prove that this method of multiplier works, but what is one
particular caveat with this I mean so far we assume that we can I mean this case x k
happens to be we assume that x k happens to be the exact minimizer of the augmented
Lagrangian right. And even if you are going to use certain algorithm to run this inner
minimization, you can maybe only approximately solve this. So, what happens if we only
approximately solve this? So, can what can kind of guarantees we can provide? So,
assumes so, caveat is it assumes that we can do exact minimization of the augmented So,
the question is if we cannot do an exact minimization if you run any numerical algorithm.
So, what kind of guarantees you can provide and it turns out that even in that case.

So, this algorithm is fairly robust. So, say is let x k or essentially what you have to say
is. So, given your c k and given your nu k this gradient of the augmented Lagrangian if
that is let us say you try to make it smaller than some epsilon k ok. So, that means you are
only approximately solving the first step for the inner minimization here. So, if you only
approximately solve it where where nu k is bounded and bounded and let the sequence
epsilon k and c k satisfy 0 less Then you can show that an x k basically converges to x
star which is the solution to the original where you assume that the rank it has a full rank.

So, Grindrow which has rank m and if it has a full rank then you can also show that nu k
plus c k h of x k also goes to nu star. So, again we are not going to prove these results, but
I mean what this result essentially states is that even if you solve the inner minimization
not exactly as long as you ensure that the sequence epsilon k converges to 0 and that is



what you eventually want right because as you are closer to the optimal solution you
would want to find the optimal solution better, but you can start with larger values of
epsilon k and that is fine too. So, you may not exactly solve it in the first few iterations.
towards I mean at larger iterations is when you are trying to solve it I mean more sort of
exactly or if the even if that is the case you I mean augmented Lagrangian or the method
of multiplier it still works. So, in general it is a pretty robust algorithm.

So, algorithm is fairly robust is what we are trying to indicate, but there are certain
practical issues. and let us try to look at it through the example that we looked at in the
last lecture. Let us consider the same example. You have f of x given by half x 1 square
plus x 2 square. So, the problem is minimize f of x subject to x 1 equal to 1.

ok and what are the optimal solutions? What is the optimal solution rather? So, x 1 star x
2 star is 1 comma 0 and what did we find for nu star minus 1 right ok. So, let us look at
the augmented Lagrangian for this nu that turns out to be half x 1 square plus c by 2
times x 1 minus 1 whole square plus nu times x 1 minus 1. What is the gradient of this
Lagrangian? Because we are running in a minimization, so we need to compute the
gradient for sure. So, what is the gradient of this with respect to x? So, with respect to x 1
it is going to be x 1 plus right and with respect to x 2 is simply going to be x 2 ok. What
about the Hessian with this like Hessian let us mean if you want to call it x 6.



what does the Hessian matrix look like? What is the first term? 1 plus c, 0, 0 and 1. So if
you look at this particular Hessian, what happens when c is very large? It is very ill
conditioned, right? So when c is very large, one of the eigenvalues is going to be very
large, right? So as c goes to infinity, matrix is ill conditioned and that is when you may
have practical issues in when you are trying to minimize this particular Lagrangian right.
So, what happens when you have ill conditioning your function level curves they look
something like this right. So, in one in one particular direction you may be making pretty
good update. but your updates in another direction would be very small right and it would
take a lot of effort for you to get to the optimal solution a lot of iterations.

And how can one avoid such issues when you are well conditioning? So, one thing is one
about starting point good initialization, but how do we make it in like invariant to this or
not invariant rather, but like I mean how can what is one way to sort of invert the effect of
Use the Hessian inverse. Use the Hessian inverse right, that Newton's method. So, one
way out is use Newton type algorithm and what Newton type algorithm does is once you
do Hessian inverse basically if you have sort of different curvatures along different
directions it basically tries to I mean sort of changes the landscape to maybe concentric
circles like these. So, that is one way to. So, instead of running simple gradient descent,
you can try Newton's type method on this.

Because as C becomes large, then you would have this issue that the matrix is going to
build condition and you would have difficulty in arriving at the optimal solution. I mean
it will still converge, but it will converge very slowly right. The other suggestion was use
good starting points. If I use a starting point somewhere over here, then it would
converge maybe in lesser iterations, but generally that is not known right. use good
starting points and the other thing is increase Ck not at a very large rate like you need not
use very large values of beta like 5 or 10.



maybe you can use a moderately large rate like let us say beta is 1.5 or something like.
So, you do not increase beta c too much. So, increase c k at a moderate rate. So, that you
are already closer to the optimal solution before c starts becoming very large ok.

Is this thing clear? So, let us look at one particular step of this for this particular
example, let us look at the first step which is minimizing this thing right. So, if I try to
minimize this thing what would be the x 2 k? So, again how did we define x 1 or x k? x k
was defined to be arg main of l c k x nu k right. So, if you want to find arg main of this
essentially we need to find x 1 and x 2 that minimum that basically sets this gradient to 0
right. So, x 2 k is simply 0 right. So, x 2 k is 0 and what about x 1 k it is at it basically
you set this to be equal to 0 right for c k and nu k.

So, x 1 k would satisfy x 1 k plus nu k plus c k, this should be equal to 0, right. Yeah, x
1 plus c times x minus n plus nu, ok. Which basically gives you x 1 k is c k minus Now,
let us look at the second step of this algorithm which is this particular nu k plus 1 is
defined to be nu k plus c k times h of x k. So, nu k plus 1 is defined to be nu k which is
nu k. plus ck times h of xk is x1k minus 1 which is nu k plus ck times which is equal to



nu k.

right ok. So, what do you get nu k plus 1 is nu k minus c k into 1 plus nu k 1 plus c k. So,
if you sort of I think just do a simple algebraic manipulation you can. Yeah you can and
using the fact that nu k star or nu star is basically minus 1, you can show that nu k plus 1
if I just subtract nu star from both these equations which is minus 1 here right. It turns out
to be nu k minus nu star divided by 1 plus c k. Now if I look at this particular if I look at
this particular update.

So, what is this update doing? For any value of c k greater than 0, this is basically
defining a contraction on new k. So, you are getting closer and closer to new star. Your
new k plus 1 will be closer to new star than new k was right for any value of c k greater
than 0. So, if you look at what this algorithm is trying to do, it is essentially defining a
contraction like basically you are getting closer and closer to new star with every in fact
rather monotonically for any value of c k greater than 0 right. So, this is how this
particular algorithm works, I mean essentially inherently you are trying to make sure that
new k goes to new star and if c k is very large then this rate of contract like basically
quickly tries to go to new star, but at the expense of making possibly making the first part
relatively ill condition right.

So, again there is a trade off that way, but this is what this algorithm is doing. So, for any
value of c k greater than 0 this particular works and it may also make sense because this
is a convex problem. So, let us look at a problem which is not convex and I think it would
be much useful to look at the role of C k then becomes very important. the same problem
pretty much, but then instead of half x 1 square I will just make it minus x 1 square. So,
again what are the optimal solution or what is the optimal solution here? x 1 star x 2 star



same as 1 0, but it turns out the nu star in this case is equal to 1 and not minus 1 because
nu transpose when you do nu transpose you get minus x 1 from here right.

So, nu star turns out to be 1 and not minus 1. Now, let us see what this like the different
steps of the method of multipliers look like. So, when I say x k is arg min arg min of L of
c k x nu k. this basically gives me x k. So, I am skipping I mean the algebra here, but I
think it is clear as to how to derive this right. So, it gives c k minus mu k c minus c k
minus 1 ok, which basically goes to x star 1 comma 0 as c goes to infinity right.

and nu k I mean even if nu k does not go to infinity it is still nu k does not go to nu star it
is still c k goes to here. But the interesting thing happens when we try and write the
second step which is nu k plus 1. So, nu k plus 1 here is essentially you can show that or
rather nu k plus 1 minus nu star with nu star equal to 1 now. this turns out to be nu k
minus nu star divided by c k minus 1. Now unlike the previous case where any value of c
k worked, in fact for a value of c k bit which is let us say you end up choosing c k as 1.

5. So, this is a diverging sequence now right. In fact nu k will get farther and farther away
from nu star. to guarantee that this converges you have to choose a value of ck greater
than 2. So, we must choose n. remember in the previous lecture we said as there is there
exists some c bar as long as c is more than c bar this would converge. So as long as you
choose ck and even if you do not increase I mean the value of ck even if you choose ck to
be like you keep it constant but maybe choose it to be 2.

5 or let us say 3 or 5 or something like that right this algorithm would still converge. In
practice because we do not know what c bar is we keep increasing the value of ck so that
it eventually hits the c bar but then as long as it has hit the c bar the algorithm would
converge and it will give return the correct solution ok. So, that way as I said algorithm in



general is very robust is this clear. So, I hope this example is it suffices right.

So, what is happening when we choose c to be more than 2. So, if I look at the
augmented Lagrangian with c more than 2. So, I am adding actually something basically
when I add this particular h of x norm square constraint with c more than 2 I am
essentially trying to negate. So, there is a non-convexity because of this term and in fact
the problem is making it strongly convex not just convex it is making it strongly convex
by adding that thing right. So, it makes a landscape not just I mean it converts a non
convex problem not just into a convex problem, but also a strongly convex problem right.
So, that is why these kind of algorithms have sort of I mean fairly used in in for
constraint optimization problem ok.

So, so no need to increase C k to infinity for convergence as long as C k is greater than
2. Any questions on this? Yeah, so we will talk about the convergence rate soon, but let
us also look at the, I mean we can, so we know that we can solve the equality constraint
optimization. How about inequality constraint optimization problems? So, now we are
trying to. So, this is our primal problem minimize f of x subject to let us say h of x equal
to 0 and g j of x So based on what you have seen so far, how can you leverage the same
tools to solve this inequality constraint optimization problem? Is it possible to convert
inequality constraint optimization problem to equality constraint optimization problem?
Then we can leverage the same tools, right? No, right? You still have lambda greater than
equal to 0.

So you want to work with Yeah let us say I add slack. So, what kind of slack do you
want to add? Let us say I add to g j I add a slack variables z sub j, but then we want z sub
j to be greater than equal to 0 right. So, we want to completely get rid of the any
inequality constraint. The idea is right I mean you are in the right track. But then you
want x plus to be greater than x minus. So, adding slack variables is fine, but and in fact
that is what we are going to do.

So, how can so the I mean essentially we want to convert this to equality constraint right
without having any any additional inequality constraints into picture. So, you are going to
add slack of this form. Now, Zj can be unconstrained ok. So, this way you can convert
inequality constraints to equality constraints right.



ok. So, what is the augmented Lagrangian now? So, now the now in this case you
essentially have two primal variables x and z ok. There will be one dual variable which
well I mean multiple dual variables however you want to call it one corresponding to h
and similarly corresponding to g, but these are equality constraints, but then the z is now
a primal variable here right. So, if I were to write the augmented Lagrangian. I would
write this as a function of x z mu and let us say I am also going to introduce lambda for
this equality constraint rather and it will be of this form f of x plus mu transpose h of x
plus c by 2 norm h of x square plus c by 2 So this is your augmented lagrangian now. So
now what do your updates look like? Is there a question? Not a function of x, why should
it be a function of x? Yeah, I mean that that is true for any variable like any even x 1
would be constrained on x 2 and so on.

But then I mean as it is like it implicitly there are functions of each other, but explicitly it
is not. So, your method of multipliers how does it look like now? So, what would be the
first step now? So, in the previous case we were getting xk, now we will be getting xk
and zk as argument So, that is step 1. Step 2 is updating your nu k right nu k plus 1 was
you have a step 3 which is lambda update. So, lambda update is lambda k plus c k times
g of xk or rather lambda j if I want to call it.

ok and the fourth step is updating C k plus 1 right. So, this is how you can work with



inequality constraint optimization problem. So, we know that as k goes to infinity this
term kind of goes to new star right. What about this particular term? What is lambda star?
this does not tell you that it is going to be more than 0 right. So, in fact you can show. So,
let us say if I if I had solved this problem using inequality constraints right.

So, you would have gotten a dual variable corresponding to inequality constraint and let
us call them lambda star. So, max of 0 and lambda j k plus c k d over j x k So, in fact you
can show that this goes to lambda j star ok, but I mean that is not super important, but
that is I mean just for your reference. So, this particular term actually goes to because you
want them to be lambda j star you know they are going to be greater than equal to 0, if
these are dual variables corresponding to the inequality constraint. So, max of 0 plus and
this particular term that actually goes to lambda j star you can show that this is the case.
They are not the same, that is why I am saying that max of 0, this term, this goes to
lambda square.

No, that is, I mean if one of them is without, let us say if it is satisfied with the, if the
inequality constraint is active, right. So, then because of complementary slackness,
lambda j is going to be 0. If it is inactive, then it is going to get some certain value. So
this is your method of multipliers.


