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So, tell me one thing let us say I have an optimization problem of this form minimize f of
x subject to h of x equal to 0. versus another optimization problem of this form minimize
f of x plus let us say c by 2 by the way h of x can be a vector valued function. So, it is.
So, do they share the same optimal optimizer x star can also assume f is convex h is
convex and so on right. So, but what would be what could be a motivation behind looking
at this kind of problem over this kind of problem the original problem. In both cases you
have to work with the constraint right.

So, let us take an example ok. Let us take an example. Suppose I want to minimize
minus x square very simple example subject to x is scalar subject to square root of let us
say x square minus 4 equal to 0. Is this a convex problem? Is minus x square a convex
function? No right, so the objective function is not convex.

But if I consider an equivalent problem, by the way what is the optimal solution to this?
there is just one point x square is equal to 4 is the only solution to it in fact. So, negative
4 is the optimal value of this objective function. But if I consider another optimization
problem in this form, this is a simple example, but let us say c by 2 x square minus 4
subject to x square minus 4. And I choose c to be greater than 2. By the way here c is
greater than 0.



I choose c to be greater than 2. So what happens if I choose c to be greater than 2? It
becomes a convex function right. So potentially non-convex problem can also become a
convex problem without like without you having to change the minimizer right. And not
just its convex in fact it becomes strongly convex right. Let's say if I work with equality
constraint like linear constraints here and if I take the norm of it you will get quadratic
type of constraints and that would potentially make the original problem strongly convex
for a large enough c even if you have the non-convex term sitting over here.

should be convex. So, anyway let us say we are working with I am saying that linear
constraints I mean anyway do not have to do with I mean they are both they are just a
fine constraint they can be both convex concave however you want to say it right. So, let
us say you just have linear constraints Ax equal to b right and if I take the norm of Ax
minus b whole square you will get something in terms of x square right and if A is let us
say full row rank you would in fact get a strongly convex objective for a large enough
value of c. So, the same optimization problem which was a non-convex problem to start
with becomes a potentially convex problem right. And this is something really great and
this is where this method of multiplier sort of comes into picture.

So, augmenting this quadratic penalty term or this quadratic cost to your original cost
this has two benefits right. So, one is quadratic penalty makes the original objective
function strongly convex or rather potentially strong, potentially right I mean that may
not be true for all kinds of equality constraint. So, it makes the original objective function
strongly convex for large enough c. The other thing is it basically has a softer penalty
than something like log barrier. So what do we mean by that? So I could have written the
same, I could have modified my objective as something like this.

log of something like this right, this would have been this would have still been fine, but



then because of this log barriers essentially you are saying that you do not let the h of x
go like away from 0 right. So, because that is the equality constraint that you are trying to
enforce. So, I mean you can look at log barrier methods which try to achieve something
like this, but in that case what happens is that you are going to be working with in the
interior of this thing right, because log is not defined for negative values. And that makes
the iterates confined to a very small region and it basically adds to numerical instability
of the algorithm that you are going to be designing right. So, iterates are confined in the
strict in strictly confined values, let me write this So, iterates strictly confined in the
interior.

Whereas if you add a quadratic penalty it has a much smoother or much nicer sort of
landscape right? So, what is the original let us say if I get back to the problem statement.
x in R n subject to h of x equal to 0. Still Lagrangian for this would be L x nu which is
defined as f of x nu plus transpose h x. Now, if I add this quadratic penalty to this
particular term or your objective function without changing the problem so essentially is I
have this right what is the, so define a new Lagrangian here, let us call, let us denote this
by L c, L sub c, where c is associated with this constant c here, right. So, L sub c x nu and
this is defined as f of x plus c by 2 plus nu transpose h of x, So, from here you can see
that by the way this is called augmented Lagrangian because you augment this quadratic
penalty.

So, this is called augmented Lagrangian and Lc basically turns out to be Lx nu plus the
So, if I try and run a saddle point problem on the original Lagrangian, let us say I get my
x star and nu star right. Now, this is a modified problem. If I run a saddle point problem, I
am going to get let us say x prime and nu prime as the saddle point for this. So, the
question is I mean the point is that you should be able to first of all if I am trying to look
at the unconstrained optimization problem, the solution to that like if I look at the



corresponding Lagrangian. they should return the same of like same optimal values of x
and nu as the original problem right.

So, when does this work right? So, when does augmented Lagrangian work? As you can
see that they would return different values of x star in here. Yeah, but then you have
changed the function right. So, this is Lc is your new Lagrangian for the new problem.
So, it would give you some like let us say you can take a dual of it and then you find nu
star or the new prime corresponding to it and then you also find the primal of it x prime
right that minimizes the that basically minimizes the Lagrangian and so on. So, you are
going you are not guaranteed to get the same x star and u star that you would have gotten
with the original problem.

the moment you take it to the Lagrangian. The original the two optimization forms are
the same right, but the moment you convert them into unconstrained optimization
problem using Lagrangian. So, you may not get the same x star and u star with your
augmented Lagrangian that you would have gotten with your x and u right because of this
additional term. Now if I try to minimize it with respect to x I am going to get something
else right. should still be satisfied, so that is fine.

I am saying that if I try and find a saddle point of this, so for a given value of c, you may
get some certain, let's say if, for a given value, let's say if I fix c, the x that minimizes this
Lagrangian, that gives me the dual, may not be the same x that minimizes the original
Lagrangian, right? Because I have shifted everything, I may shift, end up shifting
everything, right? Sorry. So, that that is. So, again let us let us I think in order to clear the
confusion let us do that one one particular exercise. Let me just write the statement. So,
let us take one example and I think it will be much clearer.

So, minimize with respect to x 1, x 2 these are a primal variables f of x which is defined
to be half x 1 square plus x 2 square subject to x 1 equal to 1. What is the optimal
solution? What is x star here? 1 comma 0 because x 1 is equal to 1 and this gets



minimized when x 2 is equal to 0. So, 1 comma 0 is the optimal x star. What is the
optimal nu star here? So, let us quickly look at. So, g nu is right and first of all is the
problem convex right, problem is convex and strong duality holds anyway there are no
inequality constraints.

So, prime will explain, so essentially KKT conditions would be satisfied, they are both
necessary and sufficient. So, let us, so you have half x 1 square plus x 2 square plus nu
times x 1 minus 1 right. minimize with respect to x. And if I set the derivative with
respect to x 2 to be 0, you get x 2 star to be 0. And if I set the derivative with respect to x
1, you get x 1 star plus nu is equal to 0 or nu star is equal to 0 or nu star is equal to
negative 1.

So, nu star is equal to negative 1. Now, look at the augmented Lagrangian. So, this was
the original Lagrangian. Now, let us So, as I said, we are going to add a constant to it.
So, Lc is going to be the original function.

Yeah, because KKT conditions are satisfied, right. So, now let us let us try and minimize
it with respect to x 1. So, we get x 1 star plus nu star or whether it is let us I am just trying
to minimize with respect to x 1 and x 2. plus c times x 1 minus 1 that is equal to 0 right or
x 1 star minus 1 that is equal to 0. So, which gives me x 2 star anyway is equal to 0.

So, x 2 star is equal to 0 is something that you directly get it from here. So, what is the
value of x 1 star here then? It is basically c minus mu upon was c plus 1. So, this
depends on c now, when only when nu is equal to nu star. So, that is the thing. So, when



nu is equal to nu star, when either when nu goes to nu star, you what do you get x1 star
then goes to the optimal one that we wanted to we wanted it to get or there is another way
out right.

I can write this as 1 minus nu over c and 1 plus 1 over c and as c goes to infinity again x1
star turns out to be 1 x1 star goes to 1. So, there are two ways through which you can
approach the same objective. or same optimizer rather. So that is the whole point. Let's
say I have a, so when do we ensure that the augmented Lagrangian and, so if I take new
to be closer to new star, the original new star, right.

Again we don't know the original new star. If we somehow take this new, let me, I mean
if this is not clear let me try to mean we do not know the original nu right, nu star. So I
take this nu closer to nu star and I take c closer to infinity. Then we can show that x goes
to x star right. So that is what we are trying to get here.

So how does and when does augmented, so the mechanism for this particular approach to
work is you somehow try and take this nu closer to nu star. I mean you are not trying to
solve the original problem first of all right. So you do not know where nu star is. Right.

Also there will be a new star. There will be a new star, yeah. And that will match the old
new star. Yeah, because the objectives are the same, yeah. So, that will like this, I mean
that will match the new star. That match the nu, yeah that will match the nu star, yes.

So, the invariant x star from this Lc and the matrix. Right, x star would match, but then
again you do not know what nu star is, right. But it will come as same as. Right, right. So
if you are at new star you will get x star.

So that is what we just saw right, for any value of c. If you are at new star you will get x
star. Yeah, but here you are assuming that we do not know the mu, but mu can be
calculated for this particular. I do not have the other problem where for a given value of
c. So for a given value of c, let us say if c is below certain threshold.



even if nu is equal to nu star it is possible that c won't like I mean x won't be closer to x
star. So, for this to work you want c to be like as long as c is sufficiently large this would
work and in fact that is the result that we are going to be I mean not deriving today but
stating today. So, there if c is sufficiently large and if nu is closer to nu star then x would
be closer to x star. the corresponding x would be closer to x star. So, that is the idea
behind augmented Lagrangian.

So, the convergence mechanism as we have seen through this example is, if you try and
take nu somehow closer to nu star and c to infinity, then we can show that we can show
that in fact x the optimal value of x basically goes to x star right. So, the idea is without
having to solve for nu star if we can somehow if we are closer to that even let us say we
are farther away from nu star, but if c is sufficiently large we can still converge to the
optimal solution right. So, that is the idea. So, we do not have to solve for nu here. we are
not really solving for nu, we are just trying to change like increase this c may be
potentially like with every iteration we will be increasing the value of c and we will be
performing certain updates.

So, that nu also tends to be closer to nu star. So, if those conditions are satisfied then for
a sufficiently large c you are basically you get x star to be closer to the or the solution to
the original lagrangian. So, that is the idea ok. So, the idea behind or the way this works
is if x star nu star satisfy second order sufficiency conditions and c is sufficiently large or
c is large enough. then x star is a So what this statement says, so let us say x star, nu star
are the optimal solutions for the original Lagrangian right.

Now if you choose c to be sufficiently large and you also assume that, I will write down
what second-order sufficiency conditions are, but let us say this pair x star, nu star
satisfies the second-order sufficiency condition. Then as a, like if you fix here, if you fix
a nu star and if you look at the augmented Lagrangian as a function of x. So this is this
basically this function closer to x star looks like a strict local minima or it has a strict
local minima around x. In fact x star turns out to be strict local minima. So when I say
strict, so you only get x star as the only solution if you are closer to and its local because
if that means you have to be closer to nu star.



So around nu star you get a strict sort of bowl of optimality where you can live with x
star being the optimal solution. but that happens only for sufficiently large C ok. But
again the reason we want to work with the augmented Lagrangian is because it has a
much nicer sort of convergence behavior than some of the problems well let us say when
f of x is not when f of x is let us say convex, but not strongly convex. So, we have seen
that for strongly convex we can accelerate optimization right. that may not be the case for
simple convex functions and by make by adding this quadratic penalty you can
potentially make the convergence much faster.

So, that is the idea behind working with augmented Lagrangian and also you can convert
non-convex problem to convex problem. So, when you when you have a non-convex
objective you would like in this case for instance you can in fact see that show that like
for instance here when nu star is equal to 1 or nu star is equal to minus 1, no matter what
your c was as long as c is positive you were getting the same like x1 star to be 1. For
non-convex case you want c to be at least certain value, there will be some threshold on
c. So, I mean in practice we do not know what c is. So, with every iteration we just
maybe the new c would be 1.

2 times the previous c and so on we keep on increasing. So, that once it hits a threshold
then you are like you can you can basically solve for the optimal x star and u star. In
general you cannot like I mean it really depends on the function that you can maybe for
certain analytical functions you can quantify that, but in general it is not it is very difficult
to know it a priori. So, you start with some value of c and you just keep increasing it. Not
divergence, but it like there are some numerical instabilities if c becomes really large
right. So, I mean you should not be starting at a very large value of c, so that the updates
that you are going to be making.

are going to be dependent on c right. So, I mean you do not make very large updates on
your x's in some sense. So, that kind of issues can be there, but I mean usually you start
with the small value of c and you gradually increase it. So, that eventually you hit that
threshold and that is how it usually works. So, second order sufficiency condition. So we
say x star nu, the pair x star nu star satisfy second order sufficiency condition.

So these sufficiency conditions are, so this is with respect to the original Lagrangian, x
star nu star is equal to 0. Basically you have stationarity in both x and nu. and you have y
transpose. So, for every y which is orthogonal to gradient of H of x, you kind of have this
constraint. So, as long as these two are satisfied, then you can show that x star is a strict
local minimum.



So, let us try and derive this. So, you have your augmented Lagrangian x nu which is
basically f of x plus nu transpose h of x. So, this is nothing but your L of x nu. So, So
what is this quantity? In the pointwise multiplication right of individual terms, this is
nothing but gradient of f of x plus So, if you now take the double derivative of this
because we want to show if it has to be a strict local minima then we have to show that
even for the Lc here this is going to be greater than 0 right that is when it is a strict local
minima. So, even for Lc this has to be greater than 0. if you take the double derivative of
this, this turns out to be this term plus let us try to write it this way which is much easier.

So, if the second order sufficiency conditions hold, okay and I consider y which are
orthogonal to gradient of h of x. So, the moment I multiply this with y, sorry h of x
transpose, the moment I sort of multiply this with y, this particular term is equal to 0
because of this constraint, right. So, let me first write down this particular term here in
terms of x and then it will be clear.



transpose. So, this is nothing but. does this additional term because this is anyway going
to be subsumed in the original Lagrangian. So, this is, now to this if I take y transpose y,
this is going to be y transpose this particular term which is greater than 0. plus c times
this particular term, which is which because of this particular thing. So, what what do we
get? This is greater than 0 right for with ok. So, what is this kind of like? So, if I look at
this matrix, this matrix is positive semi-definite right.

So, there is a result let me quickly write down this result. So, this matrix acts like a
positive definite matrix because y transpose this thing is greater than 0, this is like a
positive definite matrix. So, there is this result in linear algebra like if P and Q are the two
symmetric matrices with Q being positive semi-definite and P to be positive definite in
the null space of Q. again so this is positive definite only in the null space of Q right. So,
in the null space of q then there exists a constant c bar greater than 0 such that P plus c Q
is always positive definite for every c greater than equal to c bar. So, there exists a
sufficiently large c such that this is always positive definite and therefore, you can say
that this is strictly I mean this is a strict local minima and therefore, you have strict
inequality and that is this c bar is what we are going to be looking at in when we look at
few more examples.

So, unfortunately today I do not have like further examples to provide on this particular
work, but then in the next lecture we are going to be looking at potentially non-convex
functions. and then there you would see that unlike this particular case that we looked at



where this worked for all c's when nu was equal to nu star you would see that for those
class of functions not all c would not work. Thank you.


