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Lecture - 20: Advanced Results on PL inequality: Part 2

So, another thing about PL inequality and why do we stress so much about PL inequality
is. So, if I look at least square problems. So, for instance ordinary. So, we know that a
function g of x which is like norm x square. So, this is strongly convex, but the moment
we look at the affine transformation of this function. So, if I define f of x like this I mean
the b part is not that important, but if I look at a function of this form.

So, this may or may not be strongly convex. So this is strongly convex only if A is full
row rank. So however, f satisfies PL inequality for every A. So, this function as I said like
even though the original x norm x square this is strongly convex and a fine
transformation of it need not be strongly convex, it is strongly convex only if a is full row
rank otherwise it would not be strongly convex, but it will always satisfy pair inequality
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And, this kind of function is very common in least squares problem right like this I mean
finding an x such that a x minus the distance between a x and b is minimized. So, this is
very common right. So, again this was actually shown in by Karimi in his the same paper
2016 paper that this function always satisfies real inequality. So, let us look at this. So, let
us consider two points x and y.

ok and let the question. So, the what Karimi showed was if you have a function g which
is strongly convex to start with and you robustness



the affine transformation for any a this will always satisty PLInequality ok. So, if I have

a g of x which is sigma strongly convex. So, we need to show that f of x defined as g of a
x is satisfies PL Inequality for every for all. ok and this is not just in the context of
regression problem, linear regression problem like this, but I mean the same thing you
can translate it to logistic regression as well right, where you have 1 over 1 plus e to the
negative Ax minus v kind of thing and original I mean if.

So, as I said I mean like it is not a very restrictive class of function that we are looking
at. In fact, it if you can show something for PL inequality function satisfying PL
inequality a lot more simple like optimization problems can be mapped to this particular
class of functions. So, let us define u to be a x and v to be a'y. So, since g is strongly
convex Yeah, any matrix A. So, this need not be just for this particular choice of strongly
convex function, any g can be any strongly convex function.

Now, if I consider the affine transformation of that particular function like particular x as

A x minus B or A x let us say. So, this would be this need not be strongly convex for any
a. In fact, if a is not full row rank it would not be strongly convex, but this will still
satisfy PL inequality. So, that is the statement. So, since g sigma is strongly convex
because we somehow want to get f of x.
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So, we should write g of v because it holds for any x and y. So, it also holds for any u
and v. So, what is g of v which is g of a x that becomes f of x by definition is greater than
equal to f of x plus. So, what is gradient of g of u in terms of gradient of f? So, A inverse
or A transpose, ok. So, this becomes, so g of A x, ok.

g of A x might not No, no. So, v and for v and u it satisfies right. So, for f it does not
satisfy a strong convexity. This function for f it does not, but let us say a x is another
point in space right v. Imean x is likeax isuand ay is v.



So, for those points u and v g satisfies I mean there is a [ mean g is g is always strongly
convex right for any two points. So, u and v are any two points defined through x and y.
So, we would not have this directly in terms of let me write this first yes. So, this is what
it is. So, right because A transpose g A x is gradient of f of x.

So, this is v minus u is A y minus A x. So, you can | can write this as A transpose this
particular term and that is what it comes down to A transpose So, sorry about being
sloppy on this one, but let me rewrite this. So, this is A transpose and this is nothing but
gradient of f of x. Yeah, so that A is A transpose. I have taken this inside right.

So, trans. So, this is no, no. So, this is still g here right and this is a y minus a x is what I
have written this like this and this is a times y minus x also. So, and by definition I mean
this is nothing but gradient of f of x. So, what we get is f'y. So, if [ choose y to be x star
or the optimal solution.

So, this turns out to be f star is greater than equal to f of x plus gradient of f of x
transpose X star minus X. So, there is a result by Hoffman in I think it in his book in
1952. So, that shows that for this optimal point x star. So, this particular term is actually
greater than equal to or the term inside this thing is actually greater than equal to the
smallest nonzero singular value of. So, let me first write this of matrix A.
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So, where theta A is the smallest nonzero singular value of A. So, essentially, why do we
see a singular value of 'a' here? This is because it is \( x** - x \), right? So, you will see
that the terms are of the form \( A®T A \), and the singular values are simply the
eigenvalues of this \( A*T A \) matrix or its square, right? So, this is what it is. (The
sentence is already grammatically correct.) So, basically, what you get is that f star is
greater than or equal to f of x plus the gradient of f of x transposed multiplied by x star
minus X. No, this result is valid only for y equal to x*.



I mean, if that had been the case, then this would become a strongly convex setting,
right? If that result had been valid for any y, it would be different. However, this result is
valid only for x star, yes. No, but it is not true for any y; it is only true when y is equal to
x star. No, that is the result from Hoffman '95 that I am talking about. So, for this type of
function and this type of inequality—usually for a strongly convex function—you have
that f(y) is greater than or equal to f(x), but if you only have it in terms of the optimal x*.

So, functions of this type are called weakly strongly convex if they satisfy this condition.
So, if \( f\) satisfies the \( g \) pale inequality, then the first key point to show here is that
\( f\) is weakly strongly convex, and we will then demonstrate that it also satisfies the PL
inequality. So, this means that f satisfies only this inequality without any y, right? So, we
call it weakly strongly convex; otherwise, with \( y \), it would have been strongly convex
right away, correct? So, f* is greater than or equal to this. So \( f** \) must also be greater,
which means the right-hand side is true specifically for \( x** \). So if I try to minimize
this with respect to \( y \), let's say in \( \mathbb{R}"n\), the entire right-hand side would
still be true because this minimum value will be smaller than when you choose \( y \) to
be exactly \( x*\).

So, this will always be true. (The sentence is already grammatically correct.) So, if I try
to minimize this, the minimum value can be x star or something else, but the value you
obtain from this particular function will always be less than or equal to the value obtained
when you choose y equal to x star. So, that is what we wrote. (The sentence is already
grammatically correct.

) So, f star is greater than or equal to this particular term. Now, the unconstrained
minimizer of this expression should have, with respect to \( y \), the gradient of \( f(x) \)
plus \( \frac{\sigma \theta a}{2}(y - x) \) equal to 0, correct? Let us see, as we are
attempting this as an unconstrained minimization on y. This means that y minus x is equal
to minus 2 over sigma theta, which is the gradient of f of x. So, let us now rewrite this to
mean that \( f** \) is greater than or equal to \( f(x) \) plus the gradient of \( f(x) \)
transposed.
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Let me just write this term. Plus sigma theta a over 2, y minus x squared. Corrected:
Plus \(\sigma \theta a / 2\), \(y - x"2\). So, sigma theta is equal to a divided by 2, and then
you have 4 sigma squared theta squared. So, you get \( ** \geq f(x) - \frac{1} {2} \sigma
\theta a \), which is the same as \( \frac{1}{2} \sigma \theta a \) times the square of the
gradient. So, this is greater than or equal to f of x minus f*.

So, this implies that f satisfies the pair inequality with p equal to ¢ multiplied by 6. So,
this is proof.  (Note: The original sentence is already grammatically correct.) So,
essentially, I mean that this again shows that if you have a function that is c-strongly
convex, and you consider an affine transformation of that function with respect to the
variable x, you can define a new function like this. This would satisfy—I mean, it need
not be strongly convex, but it would always satisfy the PL inequality with exponent
sigma times theta a.
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So, we are now going to examine the robustness of f(x, t) = d f, and I will explain what



we mean by robustness. So, typically, when we compute—at least in the data-driven
regime—we try to... So, we need not have the analytical expression for the gradient of f
correct.

So, we consider the sample as different examples or sample points, and based on those,
we try to estimate the gradient of f(x) as, let us say, i equals 1 through n, with the gradient
evaluated at different points, right? That is how we attempt to approximate the gradient.
So, what I am trying to suggest is that the gradient computation need not be exact. So, if
you have a dynamical system that looks something like this: \( \frac{p - 2} {p-q -2} \) or
\(q - 1)), So, the gradient of f(x) need not be exact in most cases. So, let's say we have
some inexactness in the gradient, and we are going to capture this inexactness through an
additive disturbance, like this. So, for now, think of it purely as a control issue.
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So, you have an additive disturbance that is being added to your system. The word
"equilibrium" is a noun and does not contain any grammatical errors by itself. If you
intended to provide a complete sentence or need a specific context, please share that, and
I will help you correct it! To guarantee that the equilibrium remains at x star, or the
optimal solution, you must assume a certain structure concerning this disturbance. So,
this disturbance should be a temporary disturbance. So, what we assume is that the norm
of this should be less than or equal to some constant \( 1)) times the square of \( x - x**\),
something like that.

So, that x star is still the equilibrium for this situation. Why does it mean that, even if we
do not have this kind of assumption, we are at x star if epsilon f of x is non-zero? So, you
would still be oscillating around the equilibrium, right? So, we assume this kind of
vanishing perturbation or vanishing disturbance, and what we are going to show is that if
we choose. So, if we choose ¢l and c2 to be sufficiently large, we will still converge in a
fixed amount of time, even in the presence of disturbance. So, if you have a vanishing
disturbance like this, you are still guaranteed to converge in a fixed amount of time, as



long as you choose C1 and C2 to be sufficiently large. This also answers your question
regarding the ISS type of situation.
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Well, I mean you do not really need ISS, but it is largely, I mean, a significant gain. If
you choose C1 and C2 to be sufficiently large, you can actually subsume this disturbance.
Let us see how. We are going to use the result that we just derived for this purpose. If a
function \( f'\) satisfies the PL inequality, then it has at least one quadratic root.

So, we are going to assume that \( f'\) in this case satisfies the PL inequality with some
exponent \( \mu \) greater than 0. So, if \( f\) satisfies the PL inequality, what do we
know about it? That function must have at least quadratic growth, right? So, this is from a
function that has at least quadratic growth. F satisfies the PL inequality. The definition of
PL inequality is as follows. The sentence "Is this clear?" is indeed already grammatically
correct.
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No changes are needed. With this assumption, x minus x star is greater than or equal to



epsilon x over L, which is greater than or equal to mu over 2L. The sentence is already
grammatically correct. No changes are needed. So, from here, we know that this value is
less than or equal to L divided by mu squared. The sentence is indeed grammatically
correct as it stands.

No corrections are necessary. The sentence is already grammatically correct. So, we have
an upper bound on this vanishing disturbance in terms of the gradient of \( f(x) \), and this
will be useful later. So, we know that \( ') satisfies the PL Inequality. So, if we want to
demonstrate convergence to the optimal solution, what could be a good Lyapunov
candidate? f of x minus f star, right? Here, we are not going to use the half gradient norm
squared because we do not have any information about the Hessian of \( f'\). We have this
information for the strongly convex case, and if we are using a Newton-type flow, we can
also work with the strictly convex case.

But then, since functions that satisfy this condition appear only in equality and need not

necessarily be strongly convex, I mean, this part is a good choice for the Lyapunov
candidate, right? \( f(x) - ** \). So, v dot turns out to be okay, and x dot represents this
particular dynamical system over here. So, let's write this down. So, the gradient of f
transpose minus ¢ times (1 plus epsilon x) is acceptable. So, this expression is equal to
minus cl times p, just as before, minus c2 times this particular term, and the last term is
the transpose of the gradient of f times epsilon.

So, how do we eliminate epsilon from here using this method, given that we only have a
constraint on the norm of epsilon? So, for that, you can use the Cauchy-Schwarz
inequality here, right? This expression will be less than or equal to the product of the
norms of these two quantities, using Cauchy-Schwarz. The sentence "Is this clear?" is
already correct. So, that means \( \dot{v} \) is less than or equal to \(-c_1 - c_2\), and if |
use this particular condition here, let us call it \( \bar{l} \) or something. This is going to
be less than or equal to \( \bar{l} \) times \( q\), okay? So, let me rephrase this: we should
not do this particular thing right now. So, let us consider \( \frac{p}{p - 1} \times
\frac{q} {q - 1} \) and label this as \( \bar{l} \).
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Here, I mean that you are getting—almost without this particular term—the derivation
would have been exactly the same, right? Now, you have a positive term that conveys a
meaning, and it has an opposite polarity, right? So, we want to subsume this in some way.
So, for \( p \) greater than 2, what is this exponent \( \frac{p}{p - 1} \)? (The original
sentence is already grammatically correct.) So, for \( p \) greater than 2, \( \frac{p} {2p -
1} \) is a number between 0 and 1, correct? So, the square of this will be a number
between 0 and 2. So, if it is essentially okay for q to be a number between 1 and 2. So, we
know that \( \frac{q}{q - 2q - 1} \) is a number greater than 1.

So, q over (q minus 1) is basically going to be greater than 2. Now, we have two
regimes: one with an exponent less than 2 and the other with an exponent greater than 2.
Now, this positive term is over here. When the norm of the gradient of \( f\) is less than
1, what kind of inequality would we have between something like this and something
larger? When the norm of the gradient of \( f'\) is greater than or equal to 1, it implies that
this quantity is also greater than or equal to that, right? When the norm of the gradient of
f is less than or equal to 1, no, sorry, that was my mistake; I meant the other one. The
sentence can be corrected as follows: "It is less than or equal to 1; this is the inequality
you have.

When the norm of the gradient of f is greater than or equal to 1, you have the other
inequality, which is valid." So, that means depending on which regime you are in, you
can either use this to subsume this particular additive term or use it to subsume this
additive term. So, effectively, if I choose ¢l and c2, whose values are greater than L bar. |
can write this as \( v \cdot =c_1 - \frac{\bar{L} p}{p -1} - ¢ 2 - \bar{L} \) because it
really depends on which regime you are in. So, at least one of the terms will be
subsumed, and then you can also decrease the other exponent by this.
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So, as long as you choose c: and c: to be sufficiently large, in this case, the definition of
"sufficiently large" is that they should be greater than 1. So, this holds true, right?
Therefore, the rest of the proof follows similarly. So, I can write this as \( \dot{v} \leq
-c_1 \bar{l} \). Now, this represents the gradient of the squared norm \( \frac{1}{2} p-1
-¢ 2 -\bar{l} g™{2} - 1\).

Now, this is nothing, but it is 2 times v. Well, it's not exactly 2 times v, but we can further
use the peer inequality here, right? So, this is nothing less than or equal to minus c, 1
minus | bar. The sentence is already grammatically correct. However, if you are looking
for a slight rephrase, you could say, "What does this term mean?" It is less than or equal
to 2pv, right? The sentence is already correct. No changes are needed. No, if we choose \(
p \) to be a number greater than 2 and \( q \) to be a number between 1 and 2, right? For
these choices, we know that this holds true.

No, that is \( \frac{p}{2p - 1} \) between 0 and 1, correct? So, p divided by p minus 1 is
the result. The original sentence "Between 1 and 2." is grammatically correct, but it is
indeed incomplete. A complete sentence could be: "The numbers fall between 1 and 2.

" or "The value lies between 1 and 2." Between 1 and 2, yes, sure. (This sentence is
already grammatically correct.) I mean, this is also true, but you can always write it as 1
and 2; that's fine. I mean, it is always, yeah, dividing it by a smaller number. So, it is
always going to be a number greater than 1, which is fine; however, the point is that you
will get an exponent that is less than 2 and an exponent that is greater than 2. So, using
those exponents, you can always subsume this, right? (Note: The original sentence is
already grammatically correct.

) So, if you want to subsume this particular item, So you won't be able to subsume it in
this way. You need to choose a value of q such that you will actually get an exponent



greater than 3. So it won't work for any \( q \) between 1 and 2. But let's say I choose a
number \( q\), like \( \frac{3} {2} \). It is also a number between 1 and 2, but if I choose q
to be 3 divided by 2, then q over (q minus 1) is 1.

5 divided by 0.5, which equals 3, right? So, for \( q \) greater than \( \frac{3} {2} ), this
statement would be true, right? It would also encompass this particular case, okay? So,
C1 and C2 should be greater than L, and q should be greater than 3/2. Yeah, I mean, if
you don't know the information about L bar or L, you can just choose them to be
sufficiently large. It's not upper-bounded, right? It's lower-bounded. So, you can choose
them to be large.

(Note: The sentence is already grammatically correct. If you would like a different
phrasing, you could say: "Therefore, you can choose them to be large.") So, eventually,
you would subsume that L-bar. But Q, you need it to be greater than \( \frac{3} {2} \).
And this is P over 2P minus 1. "Minus ¢ minus I> mu v, this is q over 2q minus 1, right?"
Corrected: "Minus ¢ minus 1> mu v; this is q over 2q minus 1, right?" So, now you have
it in a form where you can simply use Polykov's condition for fixed-time stability, and
you can show that \( x \) will converge to \( x**\) in a fixed time, okay? Is this clear?
(The sentence is already correct.
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) It seems you haven't provided a sentence for correction. Please share the sentence you
would like me to help with! The sentence is grammatically correct as is. However, if

you're looking for a more formal version, you could say, "Yes, yes." So, the conditions
are: let me rewrite them.

This works. So, we need cl and c2 to be greater than I-bar. Again, even if you do not
know Ibar, you can choose cl and c2 to be large enough, correct? So, it will eventually be
greater than lbar, and q will be greater than three halves. Obviously, q is a number
between 1 and 2, but you want it to be greater than 3 by 2. So, why do we need \( q\) to
be greater than \( \frac{3} {2} \)? (This sentence is already grammatically correct.) To
ensure that this particular exponent, either q or q minus 1, is greater than 3, ¢ must be less



than 3/2. If I use q as, let us say, 2, then q should indeed be less than 3/2, right? So, if q is
less than 3 by 2, then the exponent is q divided by (q minus 1).

So, that is \( \frac{q}{q - 1} \), which is greater than 3, okay? So, you need \( q \) to be
less than \( \frac{3} {2} \). This implies that \( \frac{q}{q - 1} \) is greater than 3, and in
that case, when the gradient of \( f\) is greater than 1, you can actually use this particular
term to subsume this positive term. When the gradient of \( f'\) is less than 1, you can use
this term to encompass it. Because there is a minus sign here, right? Again, today's
lecture was a bit math-heavy, mainly because we are looking at concepts that are
relatively more advanced. But I just wanted to cover those for people who are generally
interested in this area.

From the next lecture onwards, we will revisit the discretized optimization algorithm,
and we may start exploring something called the augmented Lagrangian method or the
method of multipliers. And then that would eventually connect us with how we approach
solving constraints of the form \( ax = b \), where different agents know different parts of
the matrix \( A \). How do they collaborate to work under a common constraint and
minimize a shared objective function? And then, starting from that lecture onwards, we
would eventually begin to diverge more towards distributed optimization, which is key.

This is a part of the course. The sentence is already correct as it is. However, if you're
looking for a more formal way to express agreement, you could say, "Yes." It seems you
haven't provided a sentence for correction. Please share the sentence you'd like me to help
with! Yeah, I mean at least from this, if you choose C1 and C2 to be sufficiently large.
Then let \( q \) be an exponent that is less than \( \frac{3} {2} \).

This will work in continuous time. Now, let's move on to the discretized implementation.

The discretized implementation would have exactly the same considerations. For
instance, if I look at a discretized implementation like this, As I said, the only guarantee
you have is that if the continuous-time dynamical system has a certain property, the
discretized implementation will have that property only for a sufficiently small eta. So,
eta cannot be too large, and that also makes sense because you are actually scaling the
gradients up, right? Whether you are closer to the optimal solution or even farther away,
you are still scaling the gradients up. So, if you choose very large step sizes, you are
probably making this discretized implementation diverge.

No eta wall is going to exist; in general, eta means there is an upper bound. However, we
do not know what that upper bound is; this is an open problem.



