
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-1

Lecture - 2: Analyzing optimization algorithms in continuous time domain

Alright. So, let us move back to journal. So, when we talk about optimization right. So,
if I try to write the gradient descent algorithm, the standard gradient descent which is xk
plus 1 is xk minus eta gradient f of xk this is when we want to minimize f of x right

and this is the simple gradient descent algorithm ok. So one way is to directly analyze
these algorithms in discrete setting or in discretized setting. But what I can do is, I can
really view this algorithm. So I can pretty much rewrite it like this.

And I can consider the limiting case when the step size is really small, right. So the
limiting case when eta goes to 0, what does this left hand side converge to? So so this

left-hand side in the limiting case eta goes to 0 this is nothing but your x dot ok and the
right-hand side is gradient of f of x so this basically becomes a continuous time variant of
your gradient descent it is also called gradient flow ok? So, this is just basically studying
the continuous time limit of your discretized algorithm right? I mean in practice we are



always going to implement algorithm like the way we have seen over here right? I mean
you are going to be implementing everything in computer. So, it has to be discretized, but
from the point of view of analysis.

So, it is much easier to analyze continuous-time variance of algorithms right. And the
reason being let us say I want to optimize. So, if let us say f of x happens to be half x
square ok what is gradient of f of x x so what is the continuous time variant of it x what is
negative x what is the equilibrium of this particular so this is called this is a dynamical
system now right so what is the equilibrium of this dynamical system 0 right which is the
optimal solution right so x star is equal to 0, this is the equilibrium point, also the optimal
solution.

So, can we say anything about the stability of this particular equilibrium point? It is
exponentially stable. So, x of t is like e to the negative t right.

So, it becomes much easier to analyze these algorithms. So, we know that this algorithm
is now exponentially fast at least in continuous time it is exponentially fast convergent to
the optimal solution. So, this is equilibrium is exponentially stable. So, it tells you how
quickly this particular algorithm converges to the optimal or this particular dynamical
system or trajectories of this dynamical system converge to the equilibrium point. So, it
becomes much easier to analyze than maybe looking at the discretized version of an
algorithm.

Just from the analysis point of view it makes things much easier. So, for folks who have
had courses in control theory and stability theory, you would have heard of something
called Lyapunov stability right? So, there are lot of results in Lyapunov stability which
are related to continuous time dynamical systems and we are going to make use. So, in
since I mean it is a syscon course. So, we are definitely going to make use of all the
related concepts in stability theory and we will try and analyze these algorithms as well
as we will try and develop new algorithms which are at least in continuous time probably
faster than simple gradient descent or gradient flow. So, one example could be So, let us
say I choose I define my dynamical system which looks something like this divided by
the norm of this gradient.

So, for f of x which is half x square, what does this right hand side look like for this
particular dynamical system? x dot is minus sign of x right. is like this particular. So,



when x is positive, sign of x is 1. So, x dot is always negative 1 when x is positive and x
dot is 1 when x is negative and it is 0 when it is 0 or may be not well defined when it is 0
when x is equal to 0. But the point is when you look at function like x square or half x
square, if you are approaching closer to the optimal solution, the gradient, the value of the
gradient also becomes smaller and smaller right.

So x dot is negative. So the gradient of f of x is simply x right. So the gradient of f of x is
x. And the dynamical system that we were working with was x dot is negative x. Now as
you approach closer to the optimal solution, the value of x also becomes smaller.

That means you are making smaller and smaller updates towards the optimal solution.
And that basically slows down your convergence speed. On the other hand, this particular
dynamical system or this particular dynamical system, this always has a gradient of plus
one or minus one, no matter where you are. So this becomes particularly useful when you
are within the minus one to one range. If you are within minus one to one range, you still
have a large gradient value as compared to this particular dynamical system.

And therefore you can make faster updates towards your optimal solution. This
particular dynamical system is useful if let's say x is more than 1 then I mean then you
wouldn't want to restrict your particular update to just plus 1 or minus 1 right. But then if
you are basically in the regime from minus 1 to 1 you can make better updates or you can
make faster updates by choosing this particular dynamical system right? So that gives
you an idea of how to design dynamical system which first of all have the same
equilibrium point this one this also has the same equilibrium point right gradient f of x is
0 when x is equal to x star right. So this has the same equilibrium point but by just simply
redesigning the vector field or the right-hand side of the vector field you can come up
with algorithms which are maybe faster even in discretized version. So if I were to
discretize this algorithm I would write this as xk plus 1 is xk minus step size times
something like this.

And if you recall algorithms like Adam or Adagrad, you would see that there is some
kind of gradient normalization in those commonly used algorithms. the ones that are most
popularly used for training deep neural networks you would see that they have used some
form of gradient normalization and this is one of the this is the reason why we use
gradient normalization because we can actually closer to the optimal solution we can
make better for faster updates then is this clear? all right. So, what is the difference
between optimizing functions let us say I have a function of the form f1 x is half x



square like this and f2 x one-fourth x power 4 ok. So, both these functions have the same
optimal solutions x equal to 0 right. So, which one do you think is more sort of suitable
function to work? Suitable in the sense which I mean for which particular function we
can arrive at the optimal solution faster.

why first one right one to one right right. So, let us say this is your half x square right
and if I look at maybe one fourth x to the power four possibly looks something like this,
something like this right, this range is minus 1 to 1. So, outside this range you have better
gradients with this particular function, but the moment you are in this range of minus 1 to
1, the gradient values are basically in this case x cube right, whereas this one has gradient

of the form x. Now for x between negative 1 and 1, this is much much greater than x cube
and you would be making faster sort of updates towards the optimal solution than
working with functions of the form 1 fourth x to the 4 and this is precisely why we tend
to work with functions which are mean square laws or something mean square and not
quartic kind of function because we can optimize those functions much faster than
something like this. So these class of functions are called strongly convex function.

Does everyone know what convex function is? So we will also again I mean as I said
like we will start with optimization first. So we will be reviewing the basics of
optimization followed by basics of stability theory and that's when like once we have
covered those is when we are going to move to study distributed optimization. But this
class of function is called strongly convex function and because of the strong convexity
nature, you continue to have like a gradient value which does not diminish as fast as may
be something like one fourth quartic function of this form. And therefore it's better to
work with these class of functions where you can provide accelerated convergence
guarantees than with working with functions like these where it's difficult to provide
accelerated convergence guarantees. The question is can all functions be accelerated or
optimization of all the functions be accelerated? So strongly convex is one class of
function that we looked at which looks like, I mean you can design accelerated
optimization algorithm.

We just looked at the normalization form of it as well. If I look at functions of this form
something like mod x or a smooth version of it where I mean you do not you have a
well-defined gradient. So, you can make it arbitrarily smooth over here. So, this f of x is
mod x. So, what is the gradient of or the magnitude of the gradient at any point plus 1
right magnitude of the gradient is 1 right? So just by knowing the gradient value at any



point, you cannot ascertain how far you are from the optimal solution.

Whereas with x square if you know the gradient value you can I mean at least if you
know the optimal solution and the gradient value you know that how far you are from the
optimal solution. So just by knowing the gradient value here if you use any
gradient-based optimization There is no way for you to know how far you are from the
optimal solution and therefore these class of functions which do not have sort of this form
of gradient, a strongly convex form of gradient, these class of functions cannot be
accelerated in general using simple gradient-based optimization. So, there is a specific
class of functions, strongly convex function happens to be one of those. The other
functions which I mean again we will study later, functions which are called, functions
which satisfy something called PL inequality. which are some generalization of strongly
convex function.

So, the function that satisfy PL inequality need not be convex. For instance, if I look at x
square plus 3 sin square x. So, the graph of this would look something like this. So, this is

not a convex function. But then it still has a unique minimum which is at x equal to 0.

So, these class of functions again can be accelerated. So, we are also going to look at
different classes of functions that can whose optimization can be accelerated and so that
is again something that we are going to look at in this course. Thank you.


