
Distributed Optimization and Machine Learning

Prof. Mayank Baranwal

Computer Science & Engineering, Electrical Engineering, Mathematics

Indian Institute of Technology Bombay

Week-5

Lecture - 17: Bregman Divergence

So, let us now assume a case. Assume f is convex and hessian of f is strictly positive
definite. what does this imply? A straight convexity right. So, if the converse need not be
true if f is strictly convex that need not imply that Hessian of f is positive definite an
example would be x to the 4 right at x equal to 0 x to the 4 the Hessian is 0. but then the
function is strictly convex and what is the definition like notion like sort of geometric
meaning of straight convexity. Single optimizer.

Yes, single optimizer. So, the function all like basically if I choose any other value let us.
So, essentially if I look at this particular thing f of lambda x plus 1 minus lambda y this is
strictly less than lambda f of x. of y for every x not equal to y and lambda in open interval
0 to 1 right.

So, that means you do not have continuum of minima, you will always have a unique
minima and that is going to be global minimum as well. So, if Hessian of f is positive
definite, can we invert this matrix right right. So, it I mean if it is strictly positive definite
or strictly negative definite you can always invert that matrix right. So, let us see what
can we say about these type of functions when f is strictly convex. So, the results that we
showed they work for strongly convex case right.

Can we guarantee something for strictly strict convexity case and the answer is yes, but
then we may have to use a slightly different variant of gradient flow. So, this would be of
the form. x. If any of you are familiar with Newton's method, you basically use the
inverse of Hessian there. So, this is a continuous time variant of Newton's method.

So, instead of using the gradient directly, we essentially use Hessian inverse times
gradient. Why did we use that? To account for the curvature. To account for the
curvature, yeah. So, that is the idea. So, again when we talk about mapping optimization
algorithms to dynamical systems, there are not many choices of Lyapunov function that
you can work with, right.



Either you can work with f of x minus f star that is one of the Lyapunov functions, but
that would only make sense when you have strong convexity because you can use peer
inequality there. because eventually when you take the derivative you are going to get the
gradients and if you want to substitute the gradient in terms of f of x minus f star you
would have to use peer inequality that is not the case here right. So, the other kind of
Lyapunov function that we can use is half norm gradient f square. So, when you consider
this to be a Lyapunov function. So, v dot turns out to be gradient of f transpose h in f x
dot.

And now if I substitute x dot, you can see I can basically get rid of Hessian because
Hessian times Hessian inverse is identity. So, I can get rid of the Hessian and v dot turns
out to be. So, let me just be more precise and x dot is basically negative, I have already
looked So, Hessian times Hessian inverse that is identity and what you are left with is
minus. Is this clear? So, that is why we use the Hessian inverse here because otherwise
there is no easy way for us to actually get rid of this Hessian term that shows up. And for
strictly convex case at least when you have Hessian to be invertible this may make sense
right.

So, what do we get v dot is negative of this particular term which is minus 2 v ok. So, v
dot this implies v dot is equal to minus 2 v or v converges exponentially fast. Again it
does not tell us anything about the function about the optimizer x. but we know that the



Lyapunov function v converges exponentially fast that means a gradient they vanish
exponentially fast ok. Alright, and that is why you see the class of functions which are
strongly convex, they have specific relevance because at least for those class of functions
you can guarantee accelerated convergence.

for straight convexity like x to the 4, when we are in the range minus 1 through 1, the
gradients they are very shallow. So, it takes a lot of effort to accelerate the convergence
and that is why in general for a strictly convex function even when the Hessian is positive
definite, you cannot still guarantee convergence like exponential convergence to x star.
So, you would see that most results on exponential convergence in the context of any
optimization algorithm would actually end up assuming strong convexity. There are very
specific cases like as I said PL inequality where you do not need to assume convexity to
start with, but you still need to assume PL inequality right. So, as long as you have those
kind of like sort of non vanishing gradients in picture, I mean you can still guarantee
exponential convergence, but otherwise it becomes very difficult.

So, what if we end up using like let us say. Well not important, but at least I mean you
know that the gradients I mean you ideally want everything to converge as fast as
possible right. So, if you know something about the function maybe from by looking at
the gradients then you can say something more, but you cannot in general say about the
how x would converge to x star yeah. No, why not? I mean anywhere like near the
optimal everything would every algorithm would slow down right because you are
making tinier and tinier progresses, but at least you are making some progress. I mean
you are so you are that progress.

So, again like the kind of progress that you are making it can be exponential or it can be
like 1 over t kind of thing which is not exponential right which is just asymptotic. So, but
then if you are still making progress with larger rates that is what you desire. So,
interestingly enough if we consider the case when f is simply convex. Yeah, in
continuous time as I said right. In continuous time x dot is equal to negative x or x dot
equal to negative 10 x both have the same equilibrium and both will have exponential
convergence.

Yeah, yeah, yeah. So, there is no because in you are always decaying along the trajectory
continuously right. Whereas the moment you start discretizing it, if you choose a very
large learning rate, that discrete time trajectory is actually going to be very different from
the continuous time trajectory. If you choose smaller step sizes, you are going to be very
close to that thing. So, there is no concept of learning rate in the context of continuous
time. Learning rate sort of kicks in when we talk about discretized algorithms.



So, consider the case when f is simply convex. So, what can we say about these types of
functions? So, well if f is simply convex, what is the second order condition for
convexity? So, h n is positive semi definite. So, that is all we can say about the, so this is
the second order condition for convexity So, if let us say we end up choosing the same
Lyapunov function v. So, again in this case first of all Hessian is not invertible right. So,
we cannot use a Newton's flow, we will have to use as usual gradient flow.

So, let me first write down the dynamics since it is not invertible. we use gradient flows
that means x dot is negative ok. So, now if I choose a Lyapunov function v to be same as
half norm f square again as I said there are in much choice many choices. So, this either
this or f of x minus f star would work depending on the kind of assumptions that you
make on the function. So, v dot turns out to be you can be creative and try to come up
with Lyapunov function which are non-intuitive, but at least intuitively these I mean these
and I am going to talk about one more type of Lyapunov function would be a good sort of
suitable candidates, but not more than that.

So, v dot turns out to be gradient of f transpose hessian x dot and if x dot I write in terms
of gradient of f, this is transpose hessian and this thing is less than equal to 0, right
because the matrix hessian of f is positive semi definite. So, all we can say is v dot is less
than equal to 0. What can we conclude from this? Not even asymptotic, just stability. For
asymptotic you want V dot to be strictly less than 0. So, all we can conclude is stability of
equilibrium.

So, that means your iterations are not going to go off, but I mean convergence of x to x
star is also not guaranteed here at least just from this analysis. So, all we can conclude
about all we can conclude is your iterations your iterates x they are going to be. not like
they are basically going to be bounded around your x star, but whether or not they
converge to x star that at least from this we cannot argue. So, you would have to use



something called LaSalle invariance and I think that would be part of your homework,
where you want to show that in fact even in scenarios where v dot is less than equal to 0,
there is a way to argue that way to argue asymptotic stability and not just stability. So, we
would I would leave this for now.

Any questions on this? So, again the more the assumptions you make on your functions,
the better rates you can guarantee, but then that also mistakes the class of function that
you can work with. It does not mean that if you use like let us say I mean if I use simple,
if I choose a function f which is not let us say strictly convex, but not strongly convex. it
is it may or may not be possible to guarantee. So, there are no negative results of the form
that if f is strictly convex and not strongly convex you cannot guarantee exponential
convergence. That kind of results I mean I mean we do not have that kind of results, but
they not like I mean because all of these are anyway sufficient conditions, but if you if
you have strongly convex functions and functions that all that are also else smooth those
for all I mean for those functions simple gradient flow would also guarantee exponential
convergence.

So, that is the sort of main summary for this. For straight convexity you can you would
have to use something like if the Hessian is invertible you would have to use something
like Newton's method to guarantee at least to guarantee exponential convergence of the
Lyapunov function or the gradient. In this one? No, in this one it is great. So, yeah.

So, that is a good question. So, if in this example here, if we had used simple gradient
flow, we would have gotten v dot is negative gradient of gradient f transpose hessian f
gradient if right and hessian f we know that it is positive definite. So, this would we
would have gotten v dot is strictly less than 0. So, that means asymptotic stability, but in
order to guarantee more than asymptotic stability. So, asymptotic stability of x to x star
which is anyway that is what we can derive even in this case as well, but at least we can
derive the exponentials like exponential convergence of v to 0. Whereas, in the other case
it would have been the asymptotic convergence of v to 0 as well.

So, that is a difference. So, if you are using the curvature information, you are likely
going to accelerate the algorithm better than if you are not using the curvature
information. Sometimes curvature information is useful. So, for instance, let us consider
this example. It is a function of two variables x, y and let us say this is x square plus let
us say half x square the 0.0000005 or maybe not something like this ok.

So, what is the gradient of this function? x the first term and the second term is 0.0001y.
So, that is the gradient. Now, let us say like I want to minimize this function and I start at
10 comma 5 something like this.



That is my initial condition. So, that is your x naught comma y naught. And now I want
to optimize this. So, what would be the gradient in that case? So, you can see the gradient
is largely dominated by x. So, while I will be making very sort of large updates in the x
direction, I am almost making no updates in the y direction ok. So, if I really look at let
us say forget the continuous time version for now let us just for the sake of simplicity just
look at the discrete time variant.

So, x k plus 1 is x k minus let us say yeah gradient with respect to x. and this would be
your ok. So, if I look at these updates, so in the while in the x direction I will be making a
huge sort of update, in the y direction that does not change by much right. And if I look at
this initial condition phi, if I want to reduce this to, so what is the optimal solution here?
So, if I need to reduce this 5 to 0 that will take a lot of iterations right and that is why the
curvature information in some sense is useful and that Newton's kind of method is useful.
So, instead of let us say using the Newton's law I do a simple hack to it.

So, I design a new algorithm, I also divide this by the norm of this. and just for
numerical stability I add a small epsilon to it. Now, if I look at this particular algorithm
In this case, both x and y directions are not normalized right. So, you are making a
similar amount of like update in both the directions, just by normalizing it with respect to
the inverse of the gradient.

So, this norm of this quantity is 1. and I think what you can view this is you can
particularly view this as an adaptive gradient step right. So, at each step at each step at



each iteration your step size changes and it changes with the norm of the gradient. So, I
can view this as an adaptive gradient step method, but what you are really doing is you
are normalizing your x and y direction and that is what your Hessian inverse in some
sense is trying to do here. Because of the Hessian, you may have lost landscape which
may look something like this. So while you will be making updates largely in this
direction, in order to get from here all the way to this point, it will take a lot of effort.

The moment you make it Hessian inverse, you kind of change this landscape, lost
landscape to this circularly looking kind of landscape. And therefore, every direction is
sort of equally preferred and you can make faster updates. basically you whatever
curvature is there you sort of invert the effect of it by using Hessian inverse and that is
that is how you can accelerate convergence whereas in this case if I start somewhere over
here it will take me a lot of iterations to get to the optimal ok. So, this gradient
normalization This is quite useful and that is something that we are going to formally
look at it in today's lecture. So, I was telling that there are not many choices of Lyapunov
function that you can work with.

As I said f of x minus f star and half norm gradient f square. So, what are the choices of
Lyapunov function? again in the we are looking at it in the context of optimization
algorithms being mapped to dynamical system. So, one of them can be f of x minus f star,
another that we have looked at extensively is in some text or in some cases you may also
find this to be useful. So, this is also a valid choice of Lyapunov function why because
only at x equal to x star this is going to be 0 everywhere else it is going to be positive
right. So, these are valid Lyapunov function this in certain literature you can find use of
something called Bregman divergence.

So, does anyone know what Bregman divergence is? So, Bregman divergence. So, let me
write this. So, let me first define Bregman divergence. So, Bregman divergence is defined
for a function h which is strictly convex. So, consider f to be like let us say you are
working with f which is strongly convex or strictly convex.

So, you can also define something called Bregman divergence and what it is really
saying is. So, this particular term. So, if the function is strictly convex, this particular



term is strictly greater than 0 if p not equal to p right and otherwise it is always greater
than equal to 0. If h is convex, this term is always greater than equal to 0. If it is strictly
convex, it is strictly greater than 0 if p is not equal to q.

And if it is strong, if h is strongly convex, this term happens to be nothing but mu over 2
times norm p minus q square, right, which is anyway the Lyapunov function like this kind
of Lyapunov function or maybe this kind of Lyapunov function that you can similar to
these kind of Lyapunov functions. But this is another form of another kind of Lyapunov
function that one can potentially use and that is called Bregman divergence. ok, but you
would require h to be strictly convex in this case, just convexity alone would not help
because in that case this inequality or this particular term is just greater than equal to 0
not strictly greater than 0 right.

So, that would not help. So, it would be the function f. Yeah, a function f, your function f
or something added to your function. So, again depends on, so we at least in this course
we would not be looking at it too much, There is this paper by Michael Jordan which is
on variational perspective and optimization, it is a 2016 paper, 2016 PNAS paper by
Michael Jordan. So, Jordan actually uses looks at different like many classes of
optimization algorithms in continuous time dynamic like in continuous time, but instead
of using Lyapunov function like they basically they use Bregman divergences to basically
obtain convergence rates. So, if you are interested you can read this particular paper, I
think it is titled Variational Perspective in Optimization. I will also post this paper on
course teams. Thank you.


