
Software Conceptual Design
Dr. Sridhar Iyer
Dr. Prajish Prasad
Dr. T. G. Lakshmi

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture - 16
Unified Modelling Language (UML)

(Refer Slide Time: 00:05)

In the previous video, we talked about modelling a software design. Modelling is a way of

creating an external explicit representation of the system to be built. In this video, we will

look at the Unified Modelling Language or the UML diagrams. These diagrams can help us

represent the software design via multiple views and at a greater level of detail.



(Refer Slide Time: 00:41)

Let us look at what these views are. Two important views of a software system are the

Structural view and the Dynamic behavioural view.

(Refer Slide Time: 00:52)

So, what is the structural view? The structural view defines the structure of the software

system. They describe the things in the system and their relationships to other things. The

structural view describes the logical parts of the system, including the classes and relevant

data and functions in these classes. They do not describe the time-dependent behaviour of the

system.



(Refer Slide Time: 01:26)

One such diagram which represents the structural view is the Class Diagram. The class

diagram is a type of a static structure diagram that describes the structure of a system by

showing the systems classes, the attributes, the operations or methods and the relationship

among these objects.

(Refer Slide Time: 01:53)

The diagram shown on this slide describes the Class Diagram of the mood based Music

Player. The class diagram is the main building block of object-oriented modelling. In class

diagrams, the classes are presented with boxes that contain 3 compartments. The top



compartment contains the name of the class, the middle compartment contains the attributes

of the class, and the bottom compartment contains the operations of the class, which can be

executed.

We see that the class diagram models relevant classes like the User, the User Voice Profile,

the Playlists, the Songs and so on. Each of these classes contain data members and functions

necessary to realise certain behaviours of the mood-based music player. For example, the user

mood class has a data attribute moodName, which stores the current mood of the user. The

detectMood function, in the user mood class updates the moodName variable based on the

User and the User Voice Profile Data.

(Refer Slide Time: 03:29)

The Dynamic Behaviour View describes the behaviour of the system over time. Various

views include the state machine view, the activity view and the interaction view. The state

machine view models the possible life histories of an object of a class. The activity view

shows the flow of control among computational activities involved in performing a

calculation or a workflow.

The interaction view describes sequence of messages exchanged among different parts of a

system. It gives a holistic view of the behaviour in a system by showing the flow of control

across many objects.



(Refer Slide Time: 04:28)

The behaviours corresponding to the requirements of a system can be implemented using

Sequence Diagrams. The diagram on this slide represents the sequence diagram which

describes the behaviour of the mood detection requirement for the mood based music player

system. The classes from the class diagram are represented in the sequence diagram on the

top. And they have parallel vertical lines called the lifelines.

The horizontal arrows which you see are the messages exchanged between them in the order

that they occur. These messages can be functions from the class diagram, such as

detectMood, generatePlaylist and so on. This sequence of messages correspond to the

implementation of a given requirement or sub-requirement. In a similar fashion, sequence

diagrams can be constructed to model other requirements as well.



(Refer Slide Time: 05:52)

For example, the sequence diagram in this slide models the login feature for the mood based

music player.

(Refer Slide Time: 06:12)

There are several other UML diagrams, such as state charts, communication diagrams,

activity diagrams, etcetera which can be used to adequately model a given software design.

Details of various UML diagrams can be found in the extra resources provided in this week.

During the software design process, a subset of these UML diagrams are used to create the

design model.


