Design and Engineering of Computer Systems
Professor Mythili Vutukuru
Computer Science and Engineering
Indian Institute of Technology, Bombay
Lecture 7
Lifecycle of C Program

Hi students, in this video, we will see what happens when we run a C program. So, here you

can see that I have written a hello dot c file on the desktop. Let us open a terminal.

(Refer Slide Time: 0:28)

Man 014
saurav@ubuntu-18 -/Desktop

saurav@ubun’ sktop$ cat hello.c
#include<std
% #include<unistd.h>
* int main(){
printf("Hello world!\n");

" return 0;

}
9 saurav@ubuntu-18:~/Desktop$ gcc hello.c
s

saurav@ubuntu-1
Ea.nut hello.c
/Y Saurav@ubuntu-1 JJa.out
U7 Hello world!
sauravubuntu-18:~/Desktop$ . /a.out I

So, this is the hello dot ¢ file and let us have a look at its contents. So, it is a very simple C
program, it just prints hello world and then it returns. So, the first thing that we need to do is,
we need to compile this C program and what is compilation? So, this program is something
which we can understand, but CPU cannot understand it as is. And we need to convert this
program into instructions that a CPU can understand. So, this is exactly what a compiler

program like GCC does.

It creates an executable file called a dot out, which contains instructions based on the
underlying architecture, which is x86 in my case. So, if I run gcc space, hello dot c, it will
create an executable file called a dot out. So, here it is and it contains all the instructions
which CPU can understand. So now, if I run a dot out, you can see that it printed, hello world

on the output screen.

So, what happens when I run this a dot out? As we know that every running program is a
process, so when I run this program, it will create a new process in the RAM. It will copy this

a dot out from hard disk to the main memory and create the memory image and then CPU



will start executing the instructions. So, is there a way to see all the processes which are there

in the RAM? There is a command called top and I will open a new terminal.

(Refer Slide Time: 02:00)

Activitles 1 Terminal + Man 0%:44
saurav@pubuntu-18: -/Desktop

Mon 0514
saurav@ubuntu-18: -/Desktop
Terminal Help
6 up 2 days, 6:57, 1 user, load average: 1.22, 0.38, 0.72
1 running, 212 sleeping, @ stopped, @ zombie
: s, 5.7sy, 0.3ni, 72.21d, 0.1wa, 0.0 hi, 1.8si, 0.0 st
iB Menm : 16238796 total, 6538916 free, 2381992 used, 7317888 buff/cache
(1B Swap: 15625212 total, 15609788 free, 15424 used. 12901852 avail Mem

PID USER PR NI VIRT RES SHR S %CPU XMEM TIME+ COMMAND
P 14802 saurav 20 0 3563320 365916 131456 S
1656 saurav 20 0 2361880 169320 119504 S
15103 saurav 20 0 51324 4076 3352 R
1308 saurav 20 0 2652516 14792 10448 S 0.1 48.62 pulseaudio
1 root 20 0 225800 8664 6120 S .6 0, 65 systemd

00.17 kthreadd
reu_gp
reu_par_gp

00 nm_percpu_wg
32 ksoftirqd/0
16 rcu_sched

95 migration/@
.80 idle_inject/0

00.00 cpuhp/0
cpuhp/1
idle_inject/1

42 migration/1

05.12 ksoftirqd/1

0:00.00 kworker/1:0H-kb

0:00.00 cpuhp/2

0:00.00 idle_inject/2
02 nigration/2

0:03.96 ksoftirqd/2

2 root 20 0 ) (]
3 root 0 -20
4 root 0 -20
9 root ) 0
16 root 20

11 root

12 root

13 root

14 root

15 root

16 root

17 root

18 root

20 root

21 root

22 root

23 root

24 root

oo

coocoooDDD
AL H LI LA L LA A L e

cooco @

So, this top command shows us a list of all the processes and it updates every few seconds.
Let us change it to update every one second, so I will use this d argument. So, now it is
updating every second and showing me older processes. So, now what I will do is I will run a
dot out and try to see a corresponding process in the top output. But there are too many

processes, so I will press the O key and filter it based on command equal to a dot out.



(Refer Slide Time: 02:32)

Activities £ Terminal »

saurav@ubuntu-18:~/Desktop

rch Terminal Help
15:31 up 2 days, 6:58, 1 user, load average: 0.86, 0.92, 0.71
281 total, 1 running, 213 sleeping, @ stopped, @ zombie
12.1 us, 2.8 sy, 3.5ni, 86.6 id, 6.0 wa, 0.0 hi, 1.6 si, 6.9 st
: 16238796 total, 6520032 free, 2386832 used, 7331932 buff/cache
KiB Swap: 15625212 total, 15609788 free, 15424 used. 12886896 avail Mem

PID USER PR NI  VIRT RES SHR S U XMEM TIME+ COMMAND

So, you can see that there is no process currently running with, a dot out as command.

(Refer Slide Time: 02:42)

Mon 03:17
saurav@ubunty-18 ~/Desktop

saurav@ubuntu-18: $ cat hello.c
#includecstdio. h>
Py #include<unistd.h>
® int main(){
printf("Hello world!\n
¥ ] return 0;

}
(, saurav@gubuntu-18:~/Desktop$ gcc hello.c
sauravgubuntu-18 ktop$ 1s
Ea.nut hello.c
/0 Saurav@ubuntu-18:~/Desktop$ ./a.out
7 Hello world!

sauravubuntu-18:~/Desktop$ nano hello.c |




Mon 0317 - WA~
saurav@ubuntu-18: -/Desktop
it Ve Terminal Help

GNU nano 2.9.3 hello.c Modified

#includecstdio.h>
#include<unistd.h>

Save nodified buffer? (Answering "No' will DISCARD changes )N ]

Cancel

So, if I just directed an a dot out, it is too fast to see a process popping up in the tops output.
So, what I will do is I will add a sleep statement in hello dot c file. So, that it first waits for 10

seconds before executing the printf statement.

(Refer Slide Time: 02:58)

Man 09:17
saurav@ubuntu-18 -/Desktop

saurav@ubuntu op$ cat hello.c
#includecstdio.h
Py #include<unistd.h>
* int main()
printf("Hello world!\n");
return 0;
}
q saurav@ubuntu esktop$ gce hello.c
sauravigubuntu-18 op$ 1s
E]a.nut hello.c
/0 Saurav@ubuntu-18: p$ ./a.out
\J7 Hello world!

saurav@ubuntu-18:~/De nano hello.c
saurav@ubuntu-18 p$ gee hello.c
saurav@ubuntu-18: ktop$ ./a.out I




Activitles © Terminal ~ Man 09:17
saurav@ubunty-18 -/Desktop
Terminal Help
9 up 2 days, 7:00, 1 user, load average: 1.56, 1.19, 0.85
total, 1 running, 213 sleeping, © stopped, @ zombie
9.8us, 2.1sy, 3.5ni, 83.01d, 0.0 wa, 0.0 hi, 1.6 si, 0.0 st
: 16238796 total, 6513756 free, 2386648 used, 7338392 buff/cache
p: 15625212 total, 15609788 free, 15424 used. 12885700 avail Mem

PID USER PR_NI  VIRT RES  SHR S %CPU XMEM TIME+ COMMAND
P 15343 saurav 20 0 4380 864 BOOS 6.0 0.8 0:00.80 a.out

P
(>

o)

I will save this file. And now, because we have changed hello dot ¢, we need to compile it

again to update the executable. Now, if I run a dot out and go to the second terminal, we can
see that there is a new process with a dot out is command and this is the pid. So, this is the

(0)(03:15), which is running in CPU. It will wait for 10 seconds and print hello world. And

after it prints, it will exit.

(Refer Slide Time: 03:22)

~{Desktop

saurav@ubuntu-18
#includ i0.h>

pr
return 6;
}
(, saurav@ubuntu-18:~ p$ gce hello.c
sauravigubuntu-18 15
.out hello.c

0 saurav@ubuntu-18 pS .Ja.out
U7 Hello world!

saurav@ubuntu-1 $ nano hello.c
saurav@ubuntu

saurav@ubuntu-18

Hello world!

saurav@ubuntu-18:~/Desktop$

So that's the overall life cycle of a C program. We write a C code, we compile it to create an
executable, which a CPU can understand. And when we run an executable, it will create a
new process in the RAM and create the memory image. The CPU executes all the instructions

and then exits. So, that is it for this video. Thanks, and have a nice day.



