
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 50 (Week 7, Tutorial 1)
Basics of Perf

(Refer Slide Time: 0:16)

Hi everyone. In this video we will learn about Perf. Perf is a tool which offers a rich set of

commands to collect and analyze performance data. If we want to know which parts of the

programs are taking a lot of CPU time, then we can use perf. And let us open a terminal. And

let us go through some of the very basic commands of perf. So, I will start with the stat

command. Perf stat is used to collect statistics about any program. So, we can give it any

command, let us say ls, and it will show us the statistics when ls is run. So, we will use sudo.



(Refer Slide Time: 0:55)



First, it executed ls and then it shows the counter statistics for ls, gives us how many context

switches are there, how many CPU migrations page fault cycles, instructions et cetera. This is

very basic use of perf to collect statistics about any program. Let us say we want to collect

stats for the complete system. So, we want to collect statistics about every process that is

running on any processor, we can use the -a flag to collect the statistics. And let us say we

want to collect the statistics for one second, perf stat -a and then we can give it command

sleep 1.

(Refer Slide Time: 1:36)



So, this will count the statistics for 1 second. So, it says statistics for system wide. So, we

have these many contracts, which is in one second, these many page faults, etc. And we can

use the -d flag, get some detailed statistics.

(Refer Slide Time: 1:50)





If I run it again, there, it shows us some other strategies such as L1 cache loads, L1 cache,

load misses et cetera. Another important command that you can use with perf is perf list. So,

if I run sudo perf list.



(Refer Slide Time: 2:03)



It will list all the events that we can count using perf. So, it shows us some hardware events,

such as branch instruction, branch misses, then there are some software events for which

kernel maintains a counter, such as CPU migration, context switches. And then we have some

cache events. This PMU refers to performance monitoring unit. So, there is a separate unit

with the processor, which counts various hardware events, which include these branch

instructions, or cache misses, et cetera.

So, there are a lot of events, let us say want to measure certain event. For instance, let us try

to measure these branch instructions.

(Refer Slide Time: 2:42)



So, what we can do is we can use the -e flag. Let us say you want to measure branch

instructions for 1 second, across all the processes, so I can use -e branch instructions. And

then it will give me the count for the branch instructions for 1 second.

(Refer Slide Time: 3:04)



The next command that we will see is perf report. Perf report is used to collect the profile

data about a certain program in a separate file. So, let us say I want to record the data for

complete system for 1 second, I need to use sudo. If we do ls, then we can see there is this

perf.data file. This is a binary file, which stores the profiling data for our complete system.

(Refer Slide Time: 3:44)





So, how can we do this perf dot data file? We need to use perf report to read this binary file.

Let us use perf report where input file perf.data. So, this shows us what is the percentage of

CPU cycles that were used for this particular command and the shared object and so on. So,

let us quit this using Q and let us try to profile some C program. So, I have written this perf

demo dot c file. Let us first have a look at its contents.



(Refer Slide Time: 4:18)

So, this is a very simple program. It has two functions. One is computeFunction, another is

computeIntensiveFunction. And in the main function, we just call these two functions.



(Refer Slide Time: 4:31)

In the computeIntensiveFunction, we iterate 10 raise to 7 times, and we just add one to the

sum a dummy variable and return that sum.

(Refer Slide Time: 4:38)

In computeFunction, we iterate 10 raise to 6 times. So, computeIntensiveFunction uses 10

times more number of iterations then computeFunction.



(Refer Slide Time: 4:46)

Let us try to compile this gcc perf_demo.c. And let us run the executable and try to profile it

using perf. So, I will use sudo perf record ./a.out and this will generate the perf.data file. Now

let us try to see the profile using sudo perf report -i perf.data.



(Refer Slide Time: 5:22)



So, here it shows us the percentage of CPU that is used for various functions and the

command that is a.out, and then the function name. Here we can see that almost 88 percent of

CPU is used only in computeIntensiveFunction, and almost 9 percent is used in the

computeFunction.

(Refer Slide Time: 5:46)



So, computeIntensiFunction is almost 10 times more expensive than compute function. And

this also shows us what is the bottleneck of our program that is the

computeIntensiveFunction.

(Refer Slide Time: 5:55)





So, that is how we can profile various C programs and try to optimize their bottlenecks. If

you want to see more details about perf then you can have a look at the man page of perf.

And also there is a very nice tutorial on perf which you can find online. So, this explains

various commands of perf, and what else you can do using perf. So, that is it for this video.

Thanks and have a nice day.


