
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 47
Performance profiling and optimization

Hello everyone, welcome to the thirty third lecture in the course design and engineering of

computer systems. So, in this lecture, we are going to continue our discussion on

performance engineering. So, let us get started.

(Refer Slide Time: 0:28)

So, far this week we have understood what is performance? What are the parameters you

vary? And what are the metrics you measure when you do a load test, how to run a load test,

the types of load tests. And in the previous lecture, we have seen how to do various back of

the envelope calculations in order to do a sanity check of your load test results. And we have

also seen basics of how do you tune some system parameters in order to optimize your

hardware resource usage.

Now, after you have done a load test, and you have measured performance, if you find that

your performance numbers make sense and you can handle all the load coming into your

system then you are done nothing else needs to be done here, you expect only a load of 50

requests per second your system already has a capacity of 100 requests per second you are

done. But if you find that no no, I expect a lot more load into my system and my capacity is

not enough then you have to optimize your system to improve its capacity.



So, how do you go about doing this? So, first, you will find out which is the bottleneck

resource at your bottleneck component, you will monitor the utilization of all the hardware

resources to find that which is my bottleneck resource. And then you will use what are called

profiling tools. So, these tools will help you identify why is your resource utilization so high,

for example, if your CPU utilization is 100 percent, in handling certain traffic, then your

profiling tools will tell you where is the CPU time being spent, why is it so high?

And once you find out the root cause, then you can fix the root cause you can apply various

techniques to fix the root cause, and you can improve performance.

So, this is how this is what we want to study in today’s lecture. How do you use these

profiling tools? And what are some of the techniques to optimize performance. And note that

if you improve performance of one component bottleneck will shift to some other component.

So, it can never be the case that you fully eliminated all bottlenecks. Suppose your database is

the bottleneck, and you are you improved its capacity from 100 requests to 1000 requests per

second.

Then some other component that has a capacity of 500 requests per second now, that becomes

the bottleneck, then the bottleneck will shift if you optimize that then the bottleneck will shift

somewhere else. So, at some point, there will always be the slowest component in a system at

any point of time. So, completely eliminating bottlenecks is something that can never happen,

only thing you can do is you just keep on improving your bottleneck performance until you

can handle all the load coming in.

And once you are satisfied that no matter whatever load I expect, I can handle once you reach

that level of comfort, your performance engineering stops. So, this is an iterative process until

your performance matches whatever is the expected load into your system. So, now, let us see

how you monitor the utilizations and use profiling tools to observe what the root cause of

your problem is and some techniques that you can use to mitigate this root cause.



(Refer Slide Time: 3:35)

So, the first important thing is at your bottleneck component, some hardware resource has

would have been at full utilization. So, the question is, which is that hardware resource, so,

what you have to do is you have to monitor the utilization of all the hardware resources in

your system to find out which one is getting exhausted that is limiting the performance of

your system.

So, there are various tools available to monitor CPU utilization, for example, top is a very

commonly used tool in Linux that will tell you for each CPU core, what fraction of the CPU

is 100 percent utilized, 50 percent utilized for each CPU core it will give you that number by

this is my CPU fully utilized, is that why I am not able to handle more requests then my

capacity or is something else the problem. Then there are tools to monitor memory usage, if

you have 8 GB or 4 GB of RAM in your system, what fraction of that RAM is used by users,

by OS, what fraction is free, you running out of memory in your system is that why your

system is slow.

So, for example, the free command in Linux will tell you that. Then there are other tools to

monitor memory bandwidth utilization, note that this is different from memory usage. For

example, I could have some 8 GB of memory this monitoring memory usage will tell me

what fraction of this is occupied and what fraction is free. On the other hand memory

bandwidth is so there is this memory bus between the CPU and DRAM that can only serve

some megabytes per second or some gigabytes per second this bus has a certain capacity and

how much of this bus bandwidth is utilized and how much is free.



For example, you can only be using a very small fraction of your memory but you could be

using this all the time accessing this continuously so, that this bus becomes busy or you could

be using your entire memory, but this bus is lightly utilized you are only rarely you filled up

your entire 8 GB but you are only very rarely accessing it. So, this bus is free. These are two

different things the actual memory usage and the memory bandwidth usage both of these you

should monitor to see which one is the bottleneck and especially when you have local

memory versus NUMA memory.

So, this non uniform memory we have studied to some CPU cores some memory is closer to

some other CPU core some other memory is closer therefore, you have to monitor what is the

usage of this local memory, what is the usage of the memory that is farther away is any of this

becoming the bottleneck all of this you have to monitor. Then you also have to monitor

utilization of IO devices.

So, every IO device can only process data at a certain rate, the disk can only do like, so many

reads per second, so many writes per second it has a capacity and if you are exceeding that

capacity, then your system performance will hit a bottleneck. So, you can monitor all of this

there are tools like iostat in Linux that tell you what is the rate at which your devices reading

or writing data, all of these you monitor and from all of these things, you will be able to find

out which hardware resources saturated that is limiting the performance of my bottleneck

component is it CPU is it, memory is it memory bandwidth? Is it the disk? Is it the network

card? Which of these is the performance bottleneck?

Now, once you identify which hardware resources are saturated, the next question comes up,

why? Why is that hardware resource saturated? Why is my CPU at 100 percent utilization?

Where is the CPU spending all its time? And what is causing this high utilization? That is the

next question. And for that we use what are called profiling tools.



(Refer Slide Time: 7:20)

So, there are many profiling software available here are some names of the commonly used

ones, but there are many others also out there. So, what these profiling tools do is these

profiling software run alongside your application software on the computer, and they will

monitor the execution of the program and they will give you various pieces of information

about the execution of your program.

For example, this profilers will count various events, like hardware events, software events,

like cache misses, page faults, context switches, all of these things that are happening in your

system, they will continue. And they will also help you attribute these events to parts of the

program.

For example, you can find out that this function in my code is causing a lot of cache misses,

this part of my code is causing a lot of page faults you can do this level of analysis, you can

count events, you can attribute the events to parts of your code, then this will help you

understand how is my hardware resources being used? How is CPU time spent? Where is the

CPU spending a lot of its time in which functions, which parts of the code and which part of

the code is using which hardware resource all of this you can understand.

So, from this profiler output, then you will be able to identify which are the parts of the code

that are performing inefficiently. And what hardware software events are happening that

contribute to poor performance? Is it poor cache performance is a page fault, what is the

issue, which part of the code is causing that issue? So, once you get do this analysis, then you

can go about optimizing your system. So, if your system is performance is poor, you cannot



just stare at the million lines of code and wonder what should I do about it? These profilers

will help you pinpoint saying, here is the problem. And you can go about optimizing that one

part.

(Refer Slide Time: 9:11)

So, what are the events that these profiling software collect? So, they collect statistics about

various type of hardware and software events, and these statistics are collected, you can either

do per thread per process for each CPU system wide at many granularities you can specify

most of these tools gives you the flexibility to specify at what granularity I want to count

these events and what all events do I want to come. And the set of events are you have

various hardware events that usually the CPU will maintain itself will maintain some count in

various registers.

And these profiling tools will read those CPU registers and print it out to you in a nice format

that you can understand. So, the various events that are counted are of course, the number of

CPU cycles, everything CPU has a certain clock, a certain frequency at which the clock runs,

which counts the number of CPU cycles. And you can just count the number of CPU cycles

happening. Of course, this is the default event does nothing much interesting, your CPUs

specification, how many cycles are there?

But the more interesting events are how many instructions are executed for every CPU cycle?

Is your CPU efficiently executing a large number of instructions? Or is it executing only very

low number of instructions for every CPU cycle? So, those instructions per cycle is a very

important metric to understand the efficiency. So, why will these instructions be low? For



example, if your CPU is waiting for a lot of time, for memory access, your cache

performance is very poor, for a lot, it is spending a lot of time waiting for data to be fetched

from DRAM.

So, all of these things, there could be many reasons why your CPU is not executing as many

instructions for every cycle as it should. So, those instructions per cycle will tell you, is your

CPU efficient or is it not being very efficient? Then you have various cache misses, your

CPU has many levels of cache. And at each level of the cache, what is the hit rate? What is

the miss rate, all of these you will find out? Then other things like TLB misses and your

hardware does various optimizations, like pre-fetch things into cache, how many of those

pre-fetches have worked, how many of them not work.

So, if you take an architecture course, you will understand a lot more about what are all the,

smart things that your CPU is doing? And you can measure all of those counters to see are all

of these optimizations like caches, TLB, everything working well in the CPU or is it not

working well? So, the all of these hardware events that you can monitor. And some of the

most important ones are, your cache misses and TLB misses and instructions per cycle. So,

these will tell you, is my system being efficient or not?

Then there are also software events, these are maintained by the OS, like page faults, context

switches, is my system seeing a lot of page faults? Is that why performance is poor? So, you

can count all of these events using profiling tools.

(Refer Slide Time: 12:08)



And what is more, these profilers will also help you attribute the event to specific portions of

the code. So, whenever an event occurs, this profiler can note down what is the program

counter value at which this event has occurred. So, now it will help me identify all the cache

misses caused due to this part of the code. Of course, these events occur at a very high

frequency, so every time an event occurs, you cannot, store the program counter somewhere

that would be too much overhead. So, what these profilers do is they sample they do what is

called sampling.

So, for every 100 cache misses, I will see what the program counter value is something like

that, for some subset of events, information about the code responsible for the event is also

captured, like the program counter. And this profilers will not just, display some hexadecimal

address of the program counter, but they will actually convert it to a function name or

something also for easy readability of the user. So, that it is actually this function in my code

that is responsible.

So, by sampling this program counter value periodically, we know which part of the code is

consuming, what fraction of CPU cycles, every time for every few CPU cycles, if you profile

your program counter, the program counter was here, once here, once here, once here, here,

here. Most of the time the program counter was here, then that this function is the one that is

actually very time consuming. And very few times in very few samples, the program counter

was in other places.

So, that this parts of your code, these functions are not taking up a lot of time, whereas this

function is taking up a lot of time. So, by sampling these program counter values, you will

know where our CPU cycles being spent by sampling program counter values on cache

misses, you will know which part of the code is responsible for cache misses, things like that.

So, not just counting events, but you are also able to attribute events to specific parts of the

code. So, that this is a starting point for you to optimize your code, you will know which part

of your application needs optimization.

So, now, let us briefly see now that you have, monitored hardware resources, you found out

which resource is the bottleneck, then you have profiled your core to try and understand

which specific parts of your code are performing sub optimally. Once you have looked at all

of these measurements, you can go ahead and do some performance optimizations, what

optimization you do will depend on what your measurement results are like. But in the next



few slides, what I am going to do is point you to some of the common patterns, common

issues that occur in systems and some of the common optimizations that are undertaken.

So, of course, there are many more optimizations that can be done and in one lecture, I cannot

cover all of them. This is a full course by itself, but I will strive to present to you the most

common optimizations that people do once they profile their system.

(Refer Slide Time: 15:05)

Of course, the most common thing is most systems will have a CPU bottleneck, the CPU

cores are fully saturated by the application. And then you will profile the core to see which

specific functions in your application are using up most of the CPU. And then you will try

and optimize those functions. For example, if there is some function, some library, the link

list library that is actually using up a lot of CPU, then you might try and move to a better

implementation of the linked list or if it is a, a hash table or map library that is using up a lot

of CPU might move to a better library.

Or in your code if you have written a store data in some linked lists that is being traversed

every time and most of your CPU cycles are spent traversing the linked list suppose that is

what you find out, then you might replace this linked list with a more efficient data structure.

Once you pinpoint the source of the inefficiency, you can go and rewrite that code, optimize

that code, use better high performance libraries and try and eliminate this performance issue.

But if sometimes, not just user code sometimes even OS code might also be consuming a lot

of CPU cycles. In such cases, of course, you cannot replace your operating system that easily,



but you can optimize wherever possible. For example, if you find that a lot of CPU time is

being spent in handling interrupts, you have a network card, a high speed network card it is

getting a lot of packets and most of your CPU time is spent in handling interrupts, then what

you can do? You can optimize your device driver, we have seen this there are device drivers

like the NAPI driver, that generates fewer interrupts or if all interrupts are coming to one

CPU core using techniques like RSS, this also we have seen before you can split your

interrupt processing to multiple CPU cores.

So, you can optimize your OS also, in some ways, or if your file system, file IO is the

bottleneck of use a better file system. If context switching overhead is the bottleneck tune

your CPU schedule, in parameters, tune your scheduler algorithm so that you do not have so

many context switches. If you find that memory allocation malloc is the bottleneck, then you

use a better memory allocator instead of doing this dynamic, general purpose malloc. So,

depending on where your problem is inside the system software, also sometimes you will be

able to optimize it. So, this is one set of techniques.

(Refer Slide Time: 17:28)

Now what happens if your memory usage is too high, you have all the RAM in your system

is somehow being used. And because of that, we have seen this before, what happens if your

memory is too fully occupied, you will have thrashing, what is thrashing, some of your pages

will be sent to the swap disk.

And every time you want to access a page, there will be a page fault, or most of the times

there will be a page fault, you have to send some other page to the swap space, get this old



page back then this you will send to swap space get something else back, you are constantly

doing this swapping to disk and servicing page faults and all the time is spent handling this

and not actually doing application work.

So, if you are using too much memory in your system, this can happen. This is called

thrashing. Then how do you handle this, if your profiler shows that a lot of time is spent in

swapping, and it shows that page faults are high, then you can try and reduce the size of your

in memory data structures, maybe not store everything in memory, but store them on disk

wherever possible. And you can also improve the locality of reference in your program.

So, suppose I have, access some parts of my memory, let me try and finish all the processing

on this memory before moving on to some other part. So, if my current set of pages that I am

accessing the working set size is small, then these will be in memory most of the time, I do

not have to swap them from disk. So, improve locality of reference that is try and repeatedly

use whatever memory you have used so that you are actively being used, whatever memory is

actively being used, the working set sizes small. That is one technique.

Then if you find that you actually have poor cache hit rates and your memory bandwidth

usage is high. The total memory consumed is low, but the memory bandwidth to read and

write this DRAM that has been consumed. Why is that being consumed because, the CPU

will check caches. And if it is not there in cache, then it will go to DRAM. And if your cache

hit rate is very low, your cache is not supplying most of the data, then most of the time you

are going to DRAM and this bandwidth will become the bottleneck.

If that is what you find this utilization of this bandwidth is high and cache hit rate is poor, if

that is what your profilers tell you. What you can do is we have studied this before how to

optimize your cache usage of your system. You can design your data structure such that they

fit into caches, you can write your code such that your locality of reference is improved.

Whatever you have gotten to cache, you are trying to access that first, instead of jumping

around in your code, you can improve your TLB hit rates, you can try to sequentially access

your memory, so that the CPU hardware today does prefetching tries to fetch ahead of time,

whatever memory things you will use. So, all of these things you can do in order to improve

your cache performance.



And we have studied this in a lot of detail when we were studying the memory management

part of the course. So, depending on what the problem is, if this is the problem, then you do

this optimization. Then there are many other optimization techniques also.



(Refer Slide Time: 20:37)

For example, compilers themselves do a lot of optimizations, when the compiler generates

the machine code, the binary executable itself will do some optimizations in order to use the

underlying hardware better. So, you can when you compile your code, you can provide

various options to the compiler to do these optimizations. And there are also other techniques

being used today, where some part of your application code can be actually offloaded to some

special pieces of hardware.

Like for example, you have the GPU called the graphics processing unit. Anytime you have

to do any graphics processing, like video processing, or, displaying videos, rendering videos,

all of that you can actually offload it to the GPU. The GPU will do it much faster than

running some software on the CPU. So, there are special hardware accelerators available for

specific applications, you can use those. If you are using up all the CPU to do video

processing, then the site will be very inefficient instead use the GPU to do the video

processing.

Similarly, when IO is the bottleneck, suppose the application is doing a lot of IO to from disk

or something this is the bottleneck, then what you can do is you can maybe use a cache like

the disk buffer cache. You can store the results of IO somewhere, so that they can be accessed

faster instead of going to the disk. So, caching is one important technique that you can use.

Then, if nothing else works, you have tried everything all possible things, nothing else works,

still your hardware resources like fully utilized, its performance is not improving, then the

only option is you just add more hardware to your system, no matter what you do, your CPU



is 100 percent utilized, your system is only doing 100 requests per second. But you want to

do 200 requests per second then what do you do?

You just add more CPU cores to your system or you just add another machine and run your

system into different machines. So, that is called Scaling. Vertical scaling is to one machine

itself add more CPU cores. Horizontal scaling is add another machine altogether with extra

CPU cores. So, this is the last and final option, I have done the best possible I can with my

resources, I cannot do anything more than the only way to improve performances add more

resources. So, this caching and scaling both of these, we are going to study in the next 2

lectures.

(Refer Slide Time: 22:59)

So, that is all I have for today’s lecture. In this lecture, what I have told you is how you can

use software called profilers to understand the performance of your system and pinpoint

where is the performance bottleneck? And I have described to you some general techniques

that people follow in order to fix this performance bottleneck. In the next couple of lectures

also, we are going to see these some of these techniques like caching and scaling in more

detail.

So, as a programming exercise, you can try and install one of these profilers, for example

perf, use it to profile a simple program that you have written and actually see the output of

the profiling. Suppose you have written a program where some heavy computation has been



done in a function, then you can actually see the profiler output that it will tell you that this

function is where most of the CPU cycles are being spent. So, get some hands on experience

in using profilers and understanding the output of these profilers. So, that is all I have for this

lecture. Let us continue our discussion in the next lecture. Thank you.


