
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 44 (Week 6, Tutorial 2)
Inter Process Communication using fifo

(Refer Slide Time: 00:19)



Hi everyone, in this video we will learn about inter process communication. So, there are various

mechanisms using which two processes can interact with each other. But what we will use here is

the named pipes. So, we will run one process, process 1, and we will run another process called

process 2. And we will send some messages from process 1 to process 2 using a named pipe.

And then we will have another pipe using which will send messages back from process 2 to

process 1.

So, let us look at the code. So, this is code for process 1. So, we will open two pipes between

process 1 and process 2, one is for writing and one is for reading. So, process 1 will write in one

pipe from which process 2 will read. And there will be another pipe in which process 1 will write

and process 2 will read. So, we have two file descriptors, one is for writing one is for reading, we

print this opening fifo.

A named pipe is also called fifo and Linux. So, this fifo is just like a normal file, and we can see

that in file explorer, but it acts like a named pipe. So, we first define just two paths, this is the

path for our fifo file. So, this is inside a folder, they are myfifo1 and myfifo2, we use this mkfifo

function to create the fifo file, its first argument is the path to the file and second is the

permission. So, if we check if the return value is equal to -1 that means there were some error

and here we are checking if the error number is not EEXIT.

So, if it is EEXIT, so that would mean that this fifo was already there. And we do not worry

because we just want that there is a fifo at this particular path which we can use. We similarly



create the another fifo file. And then we open both these files. So, in process 1, we open FIFO1

for writing, and we open fifo 2 for reading.

So, we give the respective file descriptor to these variables. And if we look at process 2’s code,

we have similar code till this point where we define these myfifo1 myfifo2, we make these both

fifos. But here, we use myfifo1 for reading, and myfifo2 for writing. So, let us continue. So, we

print that fifo was open. And then we have two buffers. One is for process 1 and messages and

another is for process 2 messages.

(Refer Slide Time: 02:46)



Now, we execute this while loop. And we first read the message from fd_read, which means we

want first message from process 2 and we read it in this buffer, we check if the message length is

not 0. Then we continue and we print that this was the message received from process 2 we reset

this message from process 2 buffer and then we take in input some new message from the

terminal processor 1 we write it to the fd_write file descriptor.

So, here we are reading a message from the first pipe and here we are writing to the second pipe

using the write function, then we reset this message from process 1 buffer. So, this will execute

in a while loop. And in the end, we close both the file descriptors and we print before closed and



return 0 and in process 2’s code we have a similar code till this point. But here first we take an

input some message from the user and then we write it to fd_write.

So, we send some message from pipe 1 to process 1 and process 2 reads that message and then

we read a reply from process 1 using this read function and we print out that message and then

we again take an input this message from process 2. And this we continue till we get by in

process 2. And finally, we write an empty message to fd_write so that in process 1, this while

loop can exit. So, the length of message from process 2 will be 0 and it will break and then we

close both these file descriptors and we print a fifo closed.

(Refer Slide Time: 04:29)



So, let us compile both of these programs and see the output. Let us open two terminals. I will

compile process 1 and name the executable as process1. I will similarly compile, process2.c. And

now I run process 1. So, here if we see this process 1 is stuck at opening fifo. Let us try to

understand why it is stuck after opening fifo. Let us have a look at the code again.

So, what we are doing in process 1 is we are creating two files, we then open both these fifo

files, one for writing another for reading, and then we print fifo open. But it did not print before

open, which means that it is stuck somewhere here. So, it is stuck because in case of fifo the

open calls blocks until there is another open for reading. So, it is stuck after this point.

(Refer Slide Time: 05:44)





So, if we look at the man page of open, man2 open, and if we scroll down, so here it is

mentioned that opening the read or write end of a fifo blocks until the other end is also opened.

So, here this open call is blocking till we also open the reading end of this pipe in some other

process. So, now if I execute process 2 only then can process 1, go ahead.



(Refer Slide Time: 06:12)

So, let us again open these terminals. So, here I will execute process 2. And once I press enter,

then you will see that it will print out opened fifo. So, we have both the fifo opened in both the

processes. And process 2 is showing us this cursor for input. So, let us send some message hello

from process 2. And we receive that message here in process 1.

So, here we can send messages back and forth between process 1 and process 2, using two

named pipes. We can in fact see these fifo files in the tmp folder. So, let us execute this ls tmp.

So, here you can see these two files, myfifo1 and myfifo2. So, these are those two fifo files. So,

that is it for this video. Thanks, and have a nice day.


