
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Lecture 40
Multi-Tier Application Design

Hello everyone, welcome to the 28th lecture in the course Design and Engineering of Computer

Systems. So, in the previous lectures, we have finally seen all the building blocks needed to

design computer systems and, in this lecture, we will begin to understand how to do end to end

application design. So, let us get started.

(Refer Slide Time: 00:40)

So, real world systems are built as what are called multi-tier applications that is you have

multiple tiers or components that are distributed across several machines, you do not have

everything built as just one big monolithic component on one system, but it is distributed across

different machines.

So, for example, you might have clients, users of a computer system access the computer system

that is hosted either within the organization or on some public cloud anywhere the system can be

hosted. And then the first component that clients interact with are what are called front end

components, like web servers or something that received the user's request.



Then these web servers may not know how to process all types of requests. So, all the logic, all

the business logic of an application, you will not write in just this web server itself. Instead, there

will be multiple different application servers, there need not be just one there could be many

application servers, each of which can handle a certain type of request a certain functionality.

And these front-end servers will talk to these different application servers, get back the responses

and send it back to the client. And these application servers also may contact, there could be

other databases, which actually store application data. So, all of these app servers might be

talking to databases to store and retrieve data.

So, these databases are typically called the backend. So, in this way, real computer systems have

multiple tiers or multiple layers, you have a front end, then you have the application servers,

where all the actual business logic resides, then you have database servers in the backend, of

course, there are many different variations on the simple characterization.

But this is at a high level, how real systems look like. So, for example, if you consider an

e-commerce application, something that we have been referring to many times in this course,

then you might have a front end, a web server that displays the web page that you search for

products that you purchase, all of that could be the front end.

Then there could be different application servers that are managing different functionality. For

example, you could, there could be one server to manage all the products, one server to manage

your shopping cart, one server to do purchases, for billing, all of that all of these different

functionality could be handled by different servers.

And then you could have multiple databases, one database to store the product information, one

database to store the users order history or profile. So, you have different front ends, different

application servers, different databases, all of which are working together to produce some

functionality of say e-commerce to the user.

So, in the beginning we have seen what is a computer system, it is a set of computers that are

providing some common functionality to the user and this computer system. Now, I hope you

can visualize the internals of it, it has multiple different components that are together doing some

common work for the user.



(Refer Slide Time: 04:12)

So, the next question comes up, how do you decompose these applications? How do you build a

system composed of these multiple components? How do you design it? So, before we answer

that question, let us answer the why. Why do you need to build an application in a modular

fashion? By now I think the answer should be clear to you.

It is in general easier to design, develop, optimize, if you have many smaller components, each

component can be built independently can be tested independently can be optimized for

performance, reliability, independently and then you can put all of these together that is easier

than just writing million lines of code in one program. So, all of us understand the benefits of

modularity. The other reason is, it is also easier to maintain a system. As your system runs for

many days, maybe some components need some replacement, upgrading something fails.

All of this is easier if your system has multiple different components instead of everything in one

big file. So, therefore, modularity is critical for large systems. Now, the question comes up, how

do you modularize an application? I have this large system that I want to build, how do I know

which are the components? How do I split it into modules?

So, I will in this lecture, I will try to provide some very general guidelines of course, there are

many different ways of doing it, these are not hard and fast rules, but at a high level, very simple

ideas you can use to modularize applications, I will try and describe now. So, the first thing that

you have to do is identify what are the functionalities that your system should provide. List down



all the different things that you want your system to do. And to satisfy all of these functionalities,

you have to maintain some data, like if you want to, if you are an e-commerce website, you

might have to maintain information about products, about users about orders, all of that you have

to maintain.

Then the next thing you do is identify one type of data plus all the functions that run on that data

package them together and make that into one logical component. For example, the product

catalogue all the list of products in an e-commerce website and all the functions on that product

like adding products, buying products, returning products, whatever it is, all of those functions

on this data are implemented together in one component.

In this way, you can split your functionality into multiple components. And of course, again

within a component also a component can be providing multiple functions. For example, the

component managing your product catalogue could be providing many functions like adding

products to it, buying products, deleting products, all of that, there could be multiple functions.

And these different functions can further be decomposed into smaller components, that is usually

called micro services, each bigger logical component can have smaller micro services, providing

different functionality. These micro services can be processes or threads or container something.

You have a bigger component in that component a functionality to add new products, to buy

products, to return products to search for products, all of these different functions can be

implemented as separate sub-components or micro services within a bigger component.

And these micro services can be processes threads, whatever. So, in this way, you can

hierarchically design an application. Start with the bigger functionality, split it into logical

components, and each component you can split into sub components. And all of these

components need to interact with each other via well defined interfaces or APIs. So, the purpose

of modularity is you should not know how a component is implemented.

So, every component will just expose a certain interface and everybody else should be able to

access a component using this interface or this API. For example, the component that manages

your product catalogue can expose an API to add, buy, return, search products, whatever it can

expose an API, it can expose different functions and other components should not go and access

this product catalogue directly or mess with the code of this component in any way, you should



be able to access the functionality of the component using only this API. So, that is how you

design an application, identify the logical components, identify the sub-components, and then

identify the interfaces between all of these.

(Refer Slide Time: 09:06)

So, let us take a simple example of an E commerce system to actually run through this entire

process of application design, how you go about modularizing a computer system? So, let us

start with the functional requirements of an e-commerce application. So, suppose you want to

build a simple e-commerce system, of course, real life systems have a lot of complexity, I will

just consider what is the bare minimum requirements that you need to build an e-commerce

system.

First, you need to have some way for users to create accounts, authenticate, log in profile

information, billing information, all of that has to be managed. Then every E commerce system

will have like, some bunch of products in a catalogue and you want to let suppliers or vendors

add products to this catalogue then you want users to be able to search for the available products

using some keywords.

And then users should be able to add whatever products that they want to buy into a shopping

cart. And then check out the shopping cart pay the build for all the items do some online

payment for all the items in your shopping cart and provide some shipping address and have



there are these products in your cart, you bill them and you ship them. All of this functionality

the users want to do.

And of course, once you have placed an order, you might want to keep your history of your

orders because in the future when you get a product, you may not like it, you may want to return

it, all of this you have to support. And of course, the other thing that a lot of systems today do is

they recommend they say oh if you have purchased these products, maybe you might want to

consider looking at this product also. For their own revenue stream in the future.

So, such things also you may want to support. So, this is all the functional requirements that an

e-commerce system, a very simple e-commerce system may have to support. Now, let us see how

we can start modularizing the system. We should group together some data and the functions of

the data. For example, you can say I will have one component for managing my product

catalogue and all the functions to add products from the supplier, search, buy, return all of these

functions will be handled by the product component.

Then you can say I will have a user profile data all of that is managed in another component

adding users, authenticating users, all of that is taken care of by another component. Similarly,

another component can be there for managing all the orders, whenever somebody purchases, the

building shipping storing the order history all of that can be another component. In this way you

identify what is your data, and what are the functions on that data and group them together into

one logical component.



(Refer Slide Time: 11:46)

So, in this slide, I have shown you one example of how you can modularize an e-commerce

application. Note that this is not the only way of course real-life systems are more complex and

of course, there are many different ways of modularizing. But this is just one example that makes

sense.

For example, you can decide to have components for the user profile, for the products, for the

shopping cart, for orders and for recommendations. So, different components are managing

different functionality. So, this user profile component might use a database to store user

information, password, the your billing address, shipping address, credit card details, this

component can maintain all of this data and provide functionality like creating a new user

account, authenticating a user, updating user info and so on.

Then another component can manage all information related to products, it can keep a catalogue

of products and provide various functions to other components or to users, like searching for

products, adding products, supplier can here is your product component, the server that is

maintaining product information, the supplier can talk to this component and say add some

product, then the user can search for products, can buy products and so on.

So, this component is managing all the data pertaining to products. You can have another

component that is managing the shopping cart for each user. The every user's shopping cart,

adding items, deleting items, viewing the shopping cart and so on. You can have another



component that is actually doing the ordering the processing of an order. It maintains these

details of in every order, what are all the items purchased, all of that information is maintained.

And this component will do things like when you want to buy something, check out your cart, it

will create a new order, it will do the billing of that order, shipping, tracking.

In the future, if the user wants to cancel an order, do some returns, all of this order related,

purchase related information can be managed by one component. Of course, you can have

different kinds of modularity. You can say, one component does the billing, somebody else does

the shipping, you can also split this into even finer granularity also I am not saying this is the

only way, but this is one example of modularity.

And finally, you can have another component that is whose only job is to do recommendations,

look at all the orders that have happened in the past based on what the user has purchased, what

other users have purchased, you can recommend products for the user to buy in the future. And

this can store all the recommendations and anybody can look up these recommendations. So, in

this way, you can take these complex functional requirements, many different requirements of a

computer system and I had split them into components each component is managing some data

and doing some operations on that data that is how you can think of a computer system.

(Refer Slide Time: 15:07)

So next question comes up, how do you store these different kinds of data in a component? So,

every component is managing one or more kinds of data, then how do you store them? There are



many different options here. For example, you have things like relational databases, relational

database management systems. If you have taken a database course, you would have heard about

these. These are databases that store that store data in the form of tables, you can create a table,

every table will have a schema, different columns, a fixed format you can create tables and you

can store structured data in these tables. That is the data you are storing has a certain format.

Every row has a fixed number of columns, and so on.

And these databases also provide strong guarantees. When you store the data, there are certain

properties called ACID properties, like atomicity, consistency, isolation, durability, and these

databases also provide transaction support that is, you can do complex operations that span

multiple tables, and they will ensure that all of these operations are done very consistently and

correctly.

So, if you take a database course, you will study about all of these in more detail about how

databases work, how they store data in tables, how they support querying of the data, how they

provide all these ACID properties, transactions, all of that, you will study in a database course,

we will not cover that here.

But you should simply know that if real life systems want to store such structure data with all of

these consistency guarantees, they can use existing database systems. But of course, you might

not always want to store such structured data, sometimes you might want to store data that does

not have so much structure. For that you have different types of data stores, which are called no

SQL data stores.

This is the common name because databases usually work with SQL is the query language to

query all the rows and extract some rows and columns in a database. So, no SQL data stores

work without any structure, they can work with unstructured data. For example, you might just

have a key value store, there is some key, and there is some value corresponding to that key.

It can be anything, I do not know, what is the structure of this value, how many columns it has, is

it a table, I do not care, this is called unstructured data given a key I will give you some blob of

data. That no SQL data stores can store such data or you might have semi structured data, you

might have some structure in your data, but not a whole lot.



Like for example, you might be storing a document. It might have some structure like author

name, date or something, but that is all not very rigid structure, it can have some columns, but it

can also not have some columns sometimes or you can have data stores for to store very special

types of data like you want to store a graph, you want to store something else that has specific

properties.

So, for all such use cases, regular traditional databases are not useful therefore you have many

new no SQL systems coming up today. These systems, they are very dynamic, flexible, and they

do not provide any strict consistency guarantees, but they are higher performance they give

better performance and they are easier to scale to larger capacities than regular databases.

So, you when you design a system, you always have this design choice between using traditional

databases that have fixed format, fixed schema with very good consistency and other guarantees

or no SQL data stores that give better performance but lesser structure and lesser guarantees. Of

course, this is a spectrum there are many choices in between, but many data stores are available

again with respect some datastore stores only in memory, but some store on disk for persistence.

If you store only in memory, memory accesses fast you will get back responses you can read and

write faster if you store in disk it will take longer, but with disk you will get persistence. So,

there are many data choices available. So, if you take a database course this will become clearer

as to how you design these databases and how you design this no SQL data stores.

But for the purpose of this course it is enough to know that many different options are available.

And when you are designing a computer system based on your requirements, you will pick a data

store. For example, if you have to store user profile data, this you have to store it securely it has a

fixed format every user will have name, email, phone number, billing address, shipping address

there is a fixed format to the data such data you can store in our traditional relational database.

But if you want to store a shopping cart, you can store in a no SQL key value store, user ID and a

list of all the items in that shopping cart can be stored as a key and a value in a key value store.

Why because with shopping carts, you do not need lot of consistency, it is okay if the values are

not always consistent, it is if some failures happen and one or two items goes missing. We will

study this later when we study reliability and performance. We will see why it is easier to get



good performance when there is lesser structure in your data, when there are lesser consistency

guarantees to be provided. Therefore, you will get better performance that is always a trade-off.

You want more consistency, you have to trade-off some performance for it. So, for things like

shopping cart, it is not super important information, it is okay if it a little bit here and there

happen. So, such data can be stored in a no SQL key value store. So, therefore, depending on

your application requirements, each component can make the choice of which data store to use.

And also, it is also possible that the data will move from one store to the other. Initially, for

example, on some video streaming website, whatever the user clicks, the user clicks on a video,

they can be temporarily stored in a no SQL data store and later on this information can be

aggregated and stored in a database. So, you have many different options and you can also move

data from one kind of data store to the other. So, now that we have seen how to make

components, how to store the data in components.

(Refer Slide Time: 21:42)

Next, we will understand how to design the interfaces between components. So, you have your

front end, and you have your various application servers, there will be many servers for many

different components. And each server will again have multiple databases in the backend. So, all

of these components have to interact with each other, your front end has to contact the

application servers. And these application servers also may have to talk to each other, to

exchange some information.



So, for all of these purposes, every component needs to have a well-defined interface or API,

using which you will access the functionality provided by the component. So, the question comes

up, how do you design these APIs? So, there are many ways, one popular ways to design API's

in the form of REST API's. So, REST stands for Representational State Transfer, I will explain

what this means. So, this is a very fancy term, but the meaning is very simple. What it means is

simply use HTTP client server mechanism for providing API. So, every component, it has

multiple pieces of data that it is maintaining.

So, for every piece of data assigned some URL. For example, a component that is storing user

data, you create a URL, user, foo, profile, the address, credit card, name, email, whatever, you

create a URL like this for every piece of data that this component is managing. And then now

once this URL is created, we can use HTTP to access the data. The component can handle

various types of HTTP requests on the data.

For example, you can say, GET this URL, then you will be able to access the profile, some

address of the user. If you say POST HTTP request, you can do many different things, you can

GET, you can POST, you can do things, you can create, update, read, delete, you can do what are

called CRUD operations on data using HTTP requests.

Different types of HTTP requests can be used to create, update, read, delete your data that is

available. So, then now what is the component doing? It is simply handling HTTP requests, the

other components or front end or users are sending HTTP requests to create, read, update, delete

the data and this component is responding back with HTTP responses.

And the data all the data inside the component is represented by URLs. And of course, HTTP

responses and requests need not just be text, you can also send complicated data structures we

have seen, there are standard serialization formats like JSON available using which the

component can send complex data also not just text.

So, every component, whatever data it has, it is storing it in the form of URLs and HTTP

requests and responses are being processed in order to manipulate that data. So, this is one way

of designing interfaces between components. And the advantages of the REST interface is that

there are many frameworks available already to send and receive HTTP data. These frameworks



were available created for web pages, but we can re-use those same frameworks and instead of

sending, web pages, you can send any information about your component.

You can send user data, or the client can update user data by doing an HTTP POST request all of

these can be done just that now you are not exchanging web pages, but you are exchanging

specific items of data stored in that component. And these responses can also be cached, just like

web pages. For all of these reasons, it is easy to develop API's in the REST format.

And of course, these REST API's can be used between components, and also can be used by

clients. So, when clients have to communicate with front end servers, they can use standard

protocols, or they can use REST based APIs. You can either access a web page, you can either

access a system using a web page, using HTTP or you can also, from your app, the your app can

be just sending these REST based API messages to access information.

For example, a mapping service, you can be fetching information using, you are not going to a

webpage, but in your app, you are just using these REST based API's to access data. So, REST

based APIs are very powerful as long as you can represent your data in your application in the

form of these URLs and you can manipulate these data using these HTTP, GET, POST all of

these requests, then you can use a REST API to interact with other components in the system.

(Refer Slide Time: 26:40)

But sometimes, rest API's may not be suitable in all cases. For example, you may not be able to

represent all the data in your component as just URLs you know your data can be very complex,



and I cannot just create like a URL hierarchy to represent all of it. And it can so happen that you

cannot do all actions using only HTTP verbs.

Because HTTP is fundamentally stateless, there is no dependence on the previous state of the

data allowed and all of that. So, I will make this clear with an example. Suppose, there is a

component that is processing all the orders. And some user wants to cancel an order. So, this

component has all the list of all the orders, and you want to cancel an order. And you want to

cancel an order only if the order has not been confirmed so far.

So, this is a complicated action. How do you represent it using HTTP? It is very hard. So, HTTP,

this is not creating any information. This is not reading any information. This is not deleting

information, I cannot use HTTP delete request. Why? Because I do not want to delete the order. I

want my order to stay in the database, the fact that I have cancelled the order, I want that

information to remain.

But I just want to cancel the order. I do not want the order to be shipped to me. So, this is a very

complicated action, it does not map to just putting some information or reading information. This

is a very complicated action. So, for such actions, it is very hard to design a REST based API,

you cannot, put this action as some URL and just do HTTP fetch, or POST or delete, you cannot

do it easily like that.

Therefore, sometimes for some components for some APIs a REST based API is not suitable. In

such cases, what we can do is we can use RPC. Components can interact using remote procedure

calls. So, this server can expose a set of functions that the other components can remotely

invoke. You can remotely execute functions on another component.

So, we have seen how RPC works before. So, these two endpoints, the client and server that are

communicating over RPC, they will define their interface, your interface is no longer now

limited to HTTP, GET, POST, HTTP request response. No, your interface can be anything you

can exchange whatever message you want, you can provide whatever functions you want.

But you will define all of this and both endpoints will agree on this common interface definition.

And then this component will invoke the functions on the other side. Clients will invoke

functions at the server end. So, not that client and server is simply just indicating who provides

this functionality and who invokes the functionality.



So, the advantage here is that you can do complicated actions, you can simply have a function

for cancel and invoke that cancel, you do not have to think about, how do I do this cancel using

HTTP messages? Which HTTP request, which HTTP response? You do not have to think of all

of that. You can define whatever functions you want.

But that also means that you need a close coordination between your different components. You

need to know what functions that the other component implements and invoke them using an

RPC framework. Therefore, these RPC API's are more useful when interacting between

components of a system.

If you have external facing interfaces, you have to talk to clients outside, it is very hard to do

RPC because then the other side has to know what are all the functions, whereas HTTP anybody

you can send an HTTP request, it is a standard format. Anybody can send you an HTTP request,

anybody can use the REST API. But with RPC a more closer coordination is needed. So, this is a

design choice that you have to make, whether you want to go with REST based API's or RPC

based API s.

(Refer Slide Time: 30:49)

There is also a third type, which is called a publish subscribe or a Pub Sub API. So, in REST and

RPC, there is a client server model. That is there is one component that needs some information

from another component and it is getting it from that component. Whether using standard HTTP

request response or custom request response via RPC.



But sometimes some interfaces, they are not in this client server model, it is not like you are

asking something and getting some information back, or you are posting some information and

getting a confirmation back. Sometimes you just want to give some work to the other guy and

forget about it.

For example, you might have a server that is handling all the order information can just push this

information to another server that takes care of the recommendations. So, this order server

whenever an order comes in, it will just give this information to the recommendation server and

there is no response needed, this guy is not waiting for any information from the

recommendation server. The recommendation server will later on asynchronously process this

information and build its recommendation for the user in the future.

Similarly, when the user uploads a video to one server, the server can just give this video to

another server that will convert it into various other resolutions, and this will happen

asynchronously in some sense, the first component is not waiting for a response from the other

component.

So, such interactions are called the publish subscribe model. So, one or more components are just

publishing some information to what is called a message broker or a task queue there are many

names for such entities that you can just push information to this message broker and other

people can just read information from this message broker or a task queue.

So, this is not a very close interaction client server model, but rather it is an asynchronous Pub

Sub model. We have seen examples, we will see more examples later on also. So, with these, so

these are special programs, special frameworks called message brokers or task queues, where

some components can just publish information, other components can read this information and

process it later on.

And the subscribers so these components that push information are called the publishers and

these components that read the information or call subscribers and these subscribers can

subscribe to all the information coming in a message broker or they can subscribe to specific

topics only.

For example, in your recommendation server, there could be one server that is only listening for

orders on books and only doing recommendations on books, another server is only doing



recommendations on electronic items in this way you can just get information only about specific

orders or specific topics. And these message brokers what they will do is whenever one

component publishes message, they will temporarily store the message until other subscriber

components subscribe or receive retrieve that message later on.

And of course, these message brokers will also provide some high-performance reliable message

delivery. Many publishers should be able to push messages quickly, many subscribers should be

able to read messages quickly. And these publishers and the broker, the broker and the

subscribers will again be using maybe something like sockets, TCP to reliably exchange

messages, all of that will be there.

So, what you are doing is? You basically adding an intermediary between two components

instead of two components directly interacting with each other in a client server manner, you are

putting an intermediary so that one component can just push information the other can read the

information later on.

So, where the interaction between components does not have to be synchronous and it is

asynchronous, these Pub Sub kind of API's can be used. And there are many frameworks

available today to help you build these Pub Sub API's. There are many message brokers or task

queue software available to you, where you using which you can have this kind of an

asynchronous interaction between components.



(Refer Slide Time: 35:44)

So, that is all I have for this lecture. In this lecture, I have given you some brief guidelines and an

introduction of how you do end to end system design. So, we have considered the example of a

simple e-commerce system and we have seen, how is this complicated system built as smaller

components, how does each component store data, how do you design the API's interfaces

between these components. So, all of this, we have seen the very basic level of information about

system design.

So, I request you all to think about systems yourself and try to think about what are the

requirements, how do you modularize, what kind of data stores, what kind of API's, all of these

things that we have discussed in today's lecture, I request you to pick another example other than

e-commerce and do it on your own. So, in the next lecture, we will also run through more

examples, what we will do is we will apply all of these concepts and do an end to end design of

many different kinds of computer systems in the next lecture. So, that is all I have for now.

Thank you.


