
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 30 (Week - 4, Tutorial - 2)
Socket programming

(Refer Slide Time: 0:15)

Hi everyone. In this video, we will learn about socket programming. So, I have written this

server.c and client.c programs. Let us open them in visual code. So, let us have a look at the

server code first. So, here is the main program. First of all, we use this socket system call to

create a new socket.



And its first argument is the domain, which specifies that this is an internet socket. The

second argument specifies what is the type of socket, so we have mentioned sock stream,

which means that it will be a connection based socket. And the last argument specifies the

protocol, we have used 0 here, so it will automatically decide the protocol type based on the

sock stream. So, this returns a socket file descriptor.

(Refer Slide Time: 1:15)

And we store it in the server file descriptor variable, then we check if it has returned a

negative value. In that case, there is an error and we exit the program.

(Refer Slide Time: 1:25)



We now bind this socket file descriptor with an address. So, in server program, first we create

a socket, and then we bind it with an address so that clients can connect to this socket using

that address. So, we declare a socket address struct, and we call it server address.



(Refer Slide Time: 1:44)





We define the family as AF_INET, as we are using the internet sockets, then we define the

address as 127.0.0.1. So, this is the address of the localhost, because we will run both client

and server on the same machine. So, we will use the localhost IP address. And then we also

need to specify the port number. Here we are using 8080 as the port. So, now that we have

specified both the IP address and the port, we will bind the socket that we have created with

this address.



(Refer Slide Time: 2:19)



So, we will use the bind system call. It takes the socket file descriptor. And it also takes the

address struct as the second argument and the size of address struct as the third argument.

And if it returns negative value that means there is some error, otherwise, the socket is

successfully bound to the address mentioned here.



(Refer Slide Time: 2:38)



So, after we have assigned the address to this socket, now we can use the Listen system call

to listen for incoming connection requests to this socket. This listen system call takes two

arguments first is the socket file descriptor and second is the number of connections which

will be waiting in the queue.

(Refer Slide Time: 2:54)



So, this system call also if it returns a negative value that means there is some error.

Otherwise, now we accept the connections on this socket. So, we use this accept system call

to accept incoming connections. This accept system call will take in the first client request

which is waiting in the queue and connect the socket to that client. So, this accept system call

takes in three arguments.



(Refer Slide Time: 3:24)



First is the socket file descriptor. And second is a client address struct, which initially is

empty, we have just declared a structure. And we give it an address as an argument to accept

system call. And this will fill in the client details in this struct.

(Refer Slide Time: 3:41)





Also, it takes in a address to this int variable, and it will store the size of this struct in the

address length variable. And this accept system call returns a new socket file descriptor

which is specific to this client.



(Refer Slide Time: 3:58)



So, if this new socket is less than 0, which means there is some error, otherwise, we print out

that we are connected to the client. And we take the client address from this struct. And we

use this inet_ntoa to convert this to the ASCII format.

(Refer Slide Time: 4:12)





So, after we have successfully connected with the client, we will communicate with the

client. So, we define two buffers. One is for the client messages, and another is for the server

messages, then we have a while loop.



(Refer Slide Time: 4:25)



In the while loop first, we use the read system call to read the data which the client is sending

in the location pointed to by this message from client address, and we read in 1024 bytes.

Then we check if the message is empty then we break from this loop.

(Refer Slide Time: 4:41)





Otherwise, we print out the message that we received from the client and we reinitialize this

message from client to all zeros. Then we print the sort of prompt so that the user can enter

from the server side some message which then we can send to the client using the send

system call.



(Refer Slide Time: 4:59)



The send system call takes in the connected socket file descriptor, the message that you want

to send and the size of the message. And the last argument represents the flags.

(Refer Slide Time: 5:09)





After sending this message to the client, we reset this message from server variable to all

zeros. And this loop runs again and again. Finally, we close this server file descriptor and

return from the program.



(Refer Slide Time: 5:25)





So, that is the server.c program. Let us have a look at the client.c. In the client.c program

again, we use the socket system call to create a new socket. And here we do not need to bind

this socket to any address. But we need the server’s address so that this socket can connect to

the server. So, we define this socket at a struct and name it server address. And here we add

the servers IP address and the port.



(Refer Slide Time: 5:54)



Then we use this connect system call to connect this particular client socket with the server,

which is given by the IP address and the port. And here, the third argument is the size of this

server address struct. And if it returns a negative value, which means there is some error,

otherwise, the socket is successfully connected to the server.

(Refer Slide Time: 6:14)



Now here also, we defined two buffers, one for client another for server. And we take in input

from the user on the client side and store it in message from client. We ran a loop until this

message from client is not equal to “bye” and send this message to the server using this send

system call and this send system call takes in the socket file descriptor, the message from

client and the length of the message. And finally, if we want to mention any flags.

(Refer Slide Time: 6:42)





Then we reset this message from client to all zeros. And then we use the read system call to

read the reply which comes from the server.



(Refer Slide Time: 6:52)



So, we read the that reply in the message from server. And we print out that we have received

this message from the server. And we reset this message from server variable. And again, we

take in message from client from the user. And this whole thing repeats in a while loop.

Finally, we close the socket using the closed system call.

(Refer Slide Time: 7:12)





So, that is the overall client dot C program. Let us have a look at them side by side. So, what

will happen is the server and client will establish connected sockets. And once they have

connected sockets, then client will send a message to the Server and Server will use this read

system called to read that message. It will print out that message and then it will send some

message from the server side. And then the client reads that message. And again, it sends

some other message to the server. And that is how they communicate with each other. So, let

us compile and turn these programs.

(Refer Slide Time: 7:47)



So, I will open a terminal. And let us increase the font size. And I will open one more

terminal so that we have one terminal for server and another for client. So, let us go to the

desktop. And I will compile server.c and I will name the executable as server and also

compile client.c and name this executable as client. Now what I will do is I will first run the

server and then I will run the client so that it can establish connections.

So, once I run the server, now the server is running and it is listening for incoming

connections. Now when I run client here, it uses that connect system call to connect with the

server. And we have this connected to client with address 127.0.0.1 which is just a localhost

IP address on the server side. So, let us send some message to the server. Hello from client.

So, you can see that it shows up here on the server side that there is a message sent from the

client. And let us reply back hello from server and we received from the server on this side.

So, that is how two processes can communicate with each other. So, here we have used

localhost IP address. But in general, if the processes are on different machines, then they will

have different IP addresses and a specific port using which the server and client can connect

to each other. So, let us type in bye and that will end the connection. So, that is it for this

video. Thanks and have a nice day.


