
Design and Engineering of Computer Systems
Professor Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 29 (Week - 4, Tutorial - 1)
File I/O in C

(Refer Slide Time: 0:15)

Hi everyone. In this video, we will learn about file I/O in C programming language. So, I

have written this fileio.c program. Let us open it with visual code. So, this is the overall code.

Let us go over the code. So, here is the main program. The very first system call that we use

is the open system call, which is used to open a new file. So, what all argument does it take?

(Refer Slide Time: 0:46)





The first argument that it takes is the path to the file, then it takes certain flags. For instance,

here we have used this RDWR flag, which means we want to both read and write using this

file descriptor and second flag that we use is O_CREATE, which means if the file does not

already exist, then we want to create the file.

(Refer Slide Time: 1:05)



And the last flag is the truncate flag, which means if the file already exists, then we want to

clear all its contents. And finally, the last argument is an optional argument. And it is used

only when we create a file, it is used to set the permissions of the file. So, here we have given

read, write and execute permission to the user.

(Refer Slide Time: 1:24)



And this open system call returns a file descriptor, which we store in this fd variable. So,

what happens when we make this open system call, the process will create the new file, it will

allocate a new inode and add a mapping from the file name to this new inode number in the

parent directory. And then it will copy this inode into memory from the disk. So, now that we

have inode in the memory, it will create a new entry in the open file table, which will point to

this in memory inode.

And it will also add a new entry in the file descriptor array for this process. And that file

descriptor array entry will point to this open file table entry. And then it will return the index

in that file descriptor array as the file descriptor. So, if it returns a negative value, that means

that there was some error and we print out unable to open the file.



(Refer Slide Time: 2:16)

Otherwise, we print out file open with this as file descriptor. Now, we use the read system call

to read from an open file. Firstly, we allocate some region where we can read the contents.

(Refer Slide Time: 2:28)





And then we use this read system call to read the content from the file descriptor. So, read

system call takes three arguments. First is the file descriptor itself. Second is a pointer to the

region where it can store the data. So, we have used this c variable here. And finally, the

number of bytes which we want to read.

(Refer Slide Time: 2:49)





And this read system call returns the number of bytes that were actually read. So, for

instance, if a file has just 5 bytes, then it will return 5 instead of 10. So, what happens when

we make a read system call? On making this read system call, the process will use the file

descriptor array index and access the open file table entry. And based on that open file table

entry, it will access the inode. From that inode, it will see what all are the data blocks that

stores the corresponding data that you want.

And it will check if that data block is already there in disk buffer cache. If it is not there in

this buffer cache, then it will issue commands to the hard disk to pull the relevant data blocks

into the disk buffer cache. And then it will copy the relevant contents from the data block to

the region pointed by this address. And finally, it will return the number of bytes which were

read.

(Refer Slide Time: 3:41)



So, if it returns a negative value, that means there was some error. And if it returns 0, that

means that we have reached the end of file, so we print out end of file reached. Otherwise, we

print out these many bytes were read, and we print out the contents which are actually read.



(Refer Slide Time: 3:55)



Now we use the write system call to write this Hello World in this file. So, write system call

also takes first argument as the file descriptor. Second is the pointer to memory location from

where we want to copy the data and write to the file. And the last argument says what is the

size of data that we want to write.

So, this write system call also returns the number of bytes which were actually return to the

file. And what happens when we make this write system call based on the file descriptor, the

system will access the relevant data block where we want to write the data. And in case, we

want to write beyond the end of file, it will allocate a new data block and add its number to

the file inode. And then it will pull this data block into the disk buffer cache.

(Refer Slide Time: 4:44)



And then copy the data from this location to the data block. And finally return the number of

bytes which are written, so if it returns a negative value that means that there was some error

otherwise we print out that it has written these many bytes to the file descriptor.

(Refer Slide Time: 4:58)



Now after writing to the file descriptor, the offset inside the inode will point to the end of file.

And if you want to read the data again, we need to use the seek system call to again reset the

offset to 0. So, we use the lseek function which takes in the file descriptor, the offset that we

want to set. And if you want to set this offset in absolute way, or we want to set it related to

the current offset position.



(Refer Slide Time: 5:26)



After setting the offset back to 0, we use the read system call to again read contents from this

file descriptor, we try to read 15 bytes, but because we have just written 12 bytes, it will just

read these many bytes, and it will print out the contents.

(Refer Slide Time: 5:41)



Finally, we use this closed system call to close the file descriptor. This will remove all the

entries which are made in the open file table and the file descriptor array. And it will return 0

in case of success. Otherwise, if it returns a negative value, that means there were some error,

and that would end the program.

(Refer Slide Time: 5:59)





So, let us compile and run this program. So, we will open a terminal and compile this

program gcc fileio.c, and it creates the a.out executable let us run that executable. So, we can

see that it opened a new file with file descriptor 3. And why is it 3? Because 0, 1, 2 are

already used for standard in, standard out and standard error. And as expected, it prints out

end of file reached, because there is no data initially in this new file.

Then it writes 12 bytes to the file descriptor. And finally, again reads that 12 bytes which

were written there, and the contents are Hello World. And then it closes this file descriptor.

So, let us see if we have that test.txt file here. So, we have this test.txt file. And if we check

its contents, we can use cat text.txt. So the contents are Hello World. So, that is it for this

video. Thanks and have a nice day.


