Design and Engineering of Computer Systems
Professor Mythili Vutukuru
Computer Science and Engineering
Indian Institute of Technology, Bombay
Lecture 29 (Week - 4, Tutorial - 1)

File I/O in C

(Refer Slide Time: 0:15)

Activities Visual Studio Code ~ Frl 1857

‘\ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c X

heme

B
[
‘7’-\‘

Jpenir

int oper

fd = opén("test.txt", (

(fd<0) {

printf("Error: Unable to open the file\n");

exit(1);

printf("File cpened with file descriptor = %d\n", fd);

ar *¢ = (calloc(100,

sz = read(fd, ¢, 10);
(sz <0) {
printf("Error: Unable to read froi

HPTEL @OA0 Ln11,Col 18 (4selected) Spacesid UTF8 LF C

Hi everyone. In this video, we will learn about file I/O in C programming language. So, I
have written this fileio.c program. Let us open it with visual code. So, this is the overall code.
Let us go over the code. So, here is the main program. The very first system call that we use

is the open system call, which is used to open a new file. So, what all argument does it take?

(Refer Slide Time: 0:46)

Activities J Visual Studio Code ~

Fri1eis7

fileio.c - Visual Studio Code

'S
‘ Fle Edit Selection View Go Run Terminal Help

fileioc X

}

NPTEL ®OAO

Activities) Visual StudioCode ~

B

‘ Fle Edic Selection View Go Run
i fileio.c X

}

TEL @OA0

Activities) Visual Studio Code ~

@
\ Fle Edit Selection View Go R

i fileio.c X
A
»

}

WPrEL @0A0

(fd<0)
printf(
exit(l);

printf ('F

*) calloc(100,

sz = read(fd, c, 10);
(sz <0) {
printf("Error: Unadble to rea

Terminal Help

(fd<0) {
printf("Error:
exit(1);

Unable to

printf("Fi

un Terminal Help

fd = open(

(fd<0) {
printf("Error:
exit(1);

Unable to

printf("F

*¥) calloc(160,

sz = read(fd, c, 10);
(sz <0) {

%d\n", fd);

d from file\n");

Ln10, Col 25 (9selected) Spaces:4 UTF8

Fri 18557
fileioc - Visual Studio Code

%d\n", fd);

m file\n");

Ln10, Col 45 (Sselected) Spaces:4 UTF8 LF

Frite:s7
fileio.c - Visual Studio Code

sd\n", fd);

from file\n");

Ln 11, Col 37 (6 sele

Linux

Linux

Linux.

.

0

Activities - Visual Studio Code ~ Fri 1857

fileio.c - Visual Studio Code

) -
Fle Edit Selection View Go Run Terminal Help

fileioc X

// int oper
fd = open
(fd<0) {
printf("Error: Unable to ope e file\n');
exit(l);

printf (*File cpene vith file descriptor = %o\,
dir r N 0f T

*¢ = (char *) calloc(100,

sz = read(fd, ¢, 10);

(sz<0) {
printf("Error: Unable to read from file\n");

Ln11,Col 47 (7selected) Spaces:4 UTF8 LF C Linux &

The first argument that it takes is the path to the file, then it takes certain flags. For instance,
here we have used this RDWR flag, which means we want to both read and write using this

file descriptor and second flag that we use is O CREATE, which means if the file does not

already exist, then we want to create the file.

(Refer Slide Time: 1:05)

Activities - Visual Studio Code ~ Fri 1857

‘i fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c

main(

opening a f
/ 1n |
fd = open
(fd<0) {

printf("Error: Unable to ope
exit(1);

printf("File opened with file

*¥) calloc(160,

sz = read(fd, c, 10);
(sz <0) {
printf("Error: Unable to read from file\n");

Ln11,Col 57 (7selected) Spacesa UTF8 LF C Linx & 0

Activities - Visual Studio Code ~ Fri 157

fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c

main(

fd = open("test.txt",

(fd<0) {

printf("Error: Unable to ope

exit(l);
} i
printf("File
}

*¢ = (char ¥) calloc(100,

sz = read(fd, c, 10);
(sz < 0) {
printf("Error: Unable to read from

Ln10, Col 57 (4selected) Spaces:4 UTF8 LF C Linux &

Activities Visual Studio Code ~ Frl 1857

fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c X

fd = open

(fd<0) {

printf("Error: Unable to
exit(1);

} {
printf("File op
}

*¢ = (char *¥) :éancllOU,

sz = read(fd, ¢, 10);
(sz <0) {
printf("Error: Unable to read from file

Ln11,Col65 Spacesi4 UTF8 LF C Linx & [

And the last flag is the truncate flag, which means if the file already exists, then we want to
clear all its contents. And finally, the last argument is an optional argument. And it is used

only when we create a file, it is used to set the permissions of the file. So, here we have given

read, write and execute permission to the user.

(Refer Slide Time: 1:24)

Activities J Visual Studio Code ~ Frites7
c- Visual
‘i fileio. - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c

(fd<0) {
printf("Error: Unable to open the file\
exit(1);

} E

priﬁtf:‘“!— e gpened with file

loc(100,

sz = read(fd, c, 10);
(sz <0) {
printf("Error: Unable to read from

Ln11,Col 18 (4selected) Spaces:4 UTF8 LF C Linux &

Activities) Visual StudioCode > Fri 18:57
fileio.c - Visual Studio Code
Fle Edit Selection Vew Go Run Terminal Help

fileio.c X

pen |
open(“t

‘fb;

(fd<0) {
printf("Error: Unable to open the file\n");
exit(1);

} {
printf("File opened with file
}

r *) calloc(100,

sz = read(fd, ¢, 10);
(sz <0) {
printf("Error: Unable to read from file\n");

Ln11,Col10 Spaces:id UTF8 LF C Linux #&

And this open system call returns a file descriptor, which we store in this fd variable. So,
what happens when we make this open system call, the process will create the new file, it will
allocate a new inode and add a mapping from the file name to this new inode number in the
parent directory. And then it will copy this inode into memory from the disk. So, now that we
have inode in the memory, it will create a new entry in the open file table, which will point to

this in memory inode.

And it will also add a new entry in the file descriptor array for this process. And that file
descriptor array entry will point to this open file table entry. And then it will return the index
in that file descriptor array as the file descriptor. So, if it returns a negative value, that means

that there was some error and we print out unable to open the file.

(Refer Slide Time: 2:16)

Activities J Visual Studio Code ~ Fri18:59
i fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X
heme > saurav > Dy
1nt of)
fd = open("tes
(fd<0) {
printf("Error: open the file\n");

exit(l);

scriptor = %d\n",

B célLocHOO,

sz = read(fd, ¢, 10);
(52 <0) {
printf("Error:
exit(1);

WPrEL @0A0

Activities) Visual StudioCode ~ Fri 18:59
\ fileio.c - Visual Studio Code
Fle Edit Selection Ve Run Terminal Help

i fileio.c

- hemi
|
a5 r: or: to open the file\n");

b i
printf("F
}

N of €
¥) calloc(100, s
read(fd, ¢, 10);

) {

WPTEL @OA0 In21,Col12(1selected) Spacesid UTF8 LF C Linx & 0

Otherwise, we print out file open with this as file descriptor. Now, we use the read system call

to read from an open file. Firstly, we allocate some region where we can read the contents.

(Refer Slide Time: 2:28)

Activities

)

1 Visual Studio Code ~

Fle Edit Selection View Go Run Terminal Help

fileioc X

exit(1);

printf("F

*) calloc(100,
sz = [fead|fd, ¢, 10);
(sz<0) {

printf("Error: Unable

v
NPTEL ®OAO

Activities) Visual Studio Code ~

Fle Edit Selection View Go Run Terminal Help

fileio.c X

Desktop

(fd<0) {
printf("Error:
exit(1);

printf

= read(fd, & 19);
(sz <0) {
printf("Error: Una
exit(1);

(sz

c[sz]
printf("C ts l

X data = LAl

WFTEL @OA0

Activities J Visual Studio Code ~

(5]
Fle Edt Selection Vew Go Run Teminal Help

fileioc X

exit(l);

priﬁtf

célLoc(100,

sz = read(fd, ¢, 19);
(sz <0) {
printf(
exit(l);
(sz

printf(

: Unable to r

W

NPTEL ®OAO

Fri1e:59

fileio.c - Visual Studio Code

e\n");

or = %d\n", fd);

m file\n");

iptor %d\n

Ln23, Col 18 (4selected) Spaces:4 UTF8

Fri1e:59
fileio.c - Visual Studio Code

sd\n", fd);

d\n", sz, fd);

Ln23, Col 24 (1selected) Spaces:4 UTF8

Fri19:00
fileio - Visual Studio Code

e\n");

tor =

sd\n", fd);

from file\n");

fd);

%d\n", sz,

Ln24, Col 1 (30selected) Spaces:4 UTF8

LF

LF

LF

Linux

Linux

Linux

]

Activities - Visual Studio Code ~ Fri19:00
‘ fileio.c - Visual Studio Code
Fle Edit

Selection View Go Run Terminal Help
fileioc X
hom leio.c
(fd<0) {
printf("Error: Unable to open the file\n");
exit(l);

printf("File wit scriptor = %d\n", fd);

*¢ = | ¥) calloc(100,

sz = read(fd, ¢, 10); 1
(sz <0) {
printf("Error: Unable t
le reached\n");

rom file descriptor %d\n", sz,

fd);

\v 5
NPTEL ®OAO 1n23, Col28(2selected) Spaces:d UTF8 LF C Linux & 0

And then we use this read system call to read the content from the file descriptor. So, read

system call takes three arguments. First is the file descriptor itself. Second is a pointer to the

region where it can store the data. So, we have used this ¢ variable here. And finally, the

number of bytes which we want to read.

(Refer Slide Time: 2:49)

Activities - Visual Studio Code ~ Fri19:00
i fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c X

home saur C fileio.c
(fd<0) {
printf("Error: Unable to open the file\n");
exit(1);

printf("File opened with file d or = %d\n", fd)

¥) calloc(100,

sz = read(fd, c, 10);]

WPTEL @OA 0 Ln23,Col 30 (16 selected) Spaces:4 UTF8 LF C Llinx & [

Activities - Visual Studio Code ~ Fri19:00

“ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X

exit(l);

printf("Fi

sz = read(fd, c, 10);
sz <0) {
printf("Error: Unable to r
exit(l);

(sz
printf(
} !
printf("R
c[sz] =

n", sz, [d);

* data = "Hello

NPTEL ®OAO Ln23, Col21 (2selected) Spaces:4 UTF8 LF C Linux

Activities) Visual StudioCode » Fri19:01

‘i fileioc - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c X

pranien

exit(l);

E
"
e

priﬁtf{‘\'_.. ope t le ptor = %d\n", fd);

*) calloc(100,

sz = read(fd, c, 10);
(sz <0) {
printf("Error: Unaole
exit(1);
} (sz=0) {
printf("End
} {
printf ("R
c[sz] =
printf("C

iptor %d\n", sz, fd);

1 I (0 an
* data = "Hellc

TEL ®OA 0 Ln23, Col 28 (2selected) Spacesi4 UTF8 LF C Linux

Activities) Visual Studio Code ~ Fri 19:01

‘\ fileio.c - Visual Studio Code.
Fle Edit Selection View Go Run Terminal Help

fileio.c

exit(l);

printf("F

sz = read(fd, € 10);
(sz<0) {
printf("Error: Unable t
exit(l);

(sz
printf("Enc

} 4

printf("R

c[sz]
printf(

fil'y &7, g

n an op
* data = "Hello V

Ln23,Col 24 (1selected) Spaces:4 UTF8 LF C Linux

Activities - Visual Studio Code ~ Fri19:01
‘ efoc- Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c

printf("File opened with file descriptor = %d\n", fd);

ECREN *¥) calloc(100,

sz = read(fd, c, 10);

(sz<0) {

printf("Error: Unable to read from file\n");
exit(l);

descriptor %d\n", sz, fd);

Ln23, Col 11 (2selected) Spaces:4 UTF8 LF C Li

And this read system call returns the number of bytes that were actually read. So, for
instance, if a file has just 5 bytes, then it will return 5 instead of 10. So, what happens when
we make a read system call? On making this read system call, the process will use the file
descriptor array index and access the open file table entry. And based on that open file table
entry, it will access the inode. From that inode, it will see what all are the data blocks that

stores the corresponding data that you want.

And it will check if that data block is already there in disk buffer cache. If it is not there in
this buffer cache, then it will issue commands to the hard disk to pull the relevant data blocks
into the disk buffer cache. And then it will copy the relevant contents from the data block to
the region pointed by this address. And finally, it will return the number of bytes which were

read.

(Refer Slide Time: 3:41)

Activities Visual Studio Code ~ Fri19:01
fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X
home » saura

*) calloc(100,

sz = read(fd, ¢, 10);
(74) {
printf("Error:
exit(l

printf

printf rom fi r %d\n", sz, fd);
c[s
printf

o file\n");

or %d\n", sz, fd);

In27,Col22 Spaces:4 UTF8 LF C Linux A&

So, if it returns a negative value, that means there was some error. And if it returns 0, that
means that we have reached the end of file, so we print out end of file reached. Otherwise, we

print out these many bytes were read, and we print out the contents which are actually read.

(Refer Slide Time: 3:55)

Activities - Visual Studio Code ~

Fri19:01

lisual Studio Code

Fle Edit Selection View Go Run Terminal Help

fileio.c

WPrEL @0A0

Activities - Visual Studio Code ~

Flle Edit Selection Vies

fileioc X

Priner(t

printf

c[sz

tor %d\n", sz

fd);

')

%d\n", sz, fd);

Lseek(fd, 0,

sz = read(fd, ¢, 15);

(sz <0) {

Ln38, Col 15(Sselected) Spaces:4 UTF8 LF C

Fri19:01
fileio - Visual Studio Code

Go Run Terminal Help

'Hel 1

write(fd, data, strlen(data));

(sz <0) {

}

NPTEL ®OAO

printf("Error: Una
exit(1);

%d\n", sz, fd);

read(fd, ¢, 15)}
(sz < 0) {

Ln38, Col24 (4selected) Spaces:4 UTF8 LF C Linux &

linx &

Activities - Visual Studio Code - Fri19:01
‘ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileio.c

home » saurz

* data

sz = write(fd
(sz <0) {
printf ("
exit(l);

printf(

/ ek to ri
seek(fd, 0,

d rom an open
sz = read(fd, ¢, 15);
(sz < 0) {
Ln38, Col32 (6selected) Spaces:4 UTF8 LF C Linux &

Activities) Visual Studio Code Fri 1902
ilefo -Visual Studi
*‘ fileioc - Visual Studio Code
Fle Edic Selection View Go Run Terminal Help

fileio.c X

hom

Ln38,Col17 Spacesi4 UTF8 LF C Linx & 0

Now we use the write system call to write this Hello World in this file. So, write system call
also takes first argument as the file descriptor. Second is the pointer to memory location from
where we want to copy the data and write to the file. And the last argument says what is the

size of data that we want to write.

So, this write system call also returns the number of bytes which were actually return to the
file. And what happens when we make this write system call based on the file descriptor, the
system will access the relevant data block where we want to write the data. And in case, we
want to write beyond the end of file, it will allocate a new data block and add its number to

the file inode. And then it will pull this data block into the disk buffer cache.

(Refer Slide Time: 4:44)

Activities - Visual Studio Code ~ Fri19:02
‘ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X

iptor %d\n", sz, fd);

sd\n", sz, fd);

\i >
NPTEL ®OAO 1n38, Col24 (4selected) Spacessd UTF8 LF C Linux &

Activities) Visual StudioCode » Fri19:03

‘ fileioc - Visual Studio Code
Fle Edic Selection View Go Run Terminal Help

E fileio.c X

E hem

(fd, data, strlen(data));
(sz <0) {
printf("Error: Unable to write to file\n");
exit(1);

} i
printf %) bytes to file descriptor %d\n*, sz, fd);

}

lseek(fd, 0,

> to read from file\n");

r %d\n", sz, fd);

NPTEL ®OAO Ln37,Col1 Spacesd UTF8 LF C Llinx & 0

And then copy the data from this location to the data block. And finally return the number of
bytes which are written, so if it returns a negative value that means that there was some error

otherwise we print out that it has written these many bytes to the file descriptor.

(Refer Slide Time: 4:58)

Activities Visual Studio Code ~ Fri19:03

“ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X

home » saurz

sz = write(fd, data, strlen(data))
(sz <0) {
printf("Error: Unable to write to file\n")
exit(1);
} {
printf ("W
}

or %d\n", sz, fd);

Lseek(fd, 0, §

/ alr rol N open T €
sz = read(fd, ¢, 15);
(sz <0) {
printf("Error: Unable to read from file\n");

ptor %d\n", sz, fd);

Ln47, Col 26 (8selected) Spaces:4 UTF8 LF C Linux &

Now after writing to the file descriptor, the offset inside the inode will point to the end of file.
And if you want to read the data again, we need to use the seek system call to again reset the
offset to 0. So, we use the Iseek function which takes in the file descriptor, the offset that we
want to set. And if you want to set this offset in absolute way, or we want to set it related to

the current offset position.

(Refer Slide Time: 5:26)

Activities - Visual Studio Code ~

Fle Edit Selection View Go Run Terminal Help

fileio.c X

printf('

seek(fd, 0,

 fron an o

z i), @ 1Ei)g
(sz <0) {
printf("Error:
exit(1)

Unabl

} (s:
printf("End o
} {
printf(’
c[sz]
printf('

res = close(fd);

(res<0) {
fmbd i
NPTEL ®OA O

Activities) Visual StudioCode ~

Fle Edit Selection View Go Run Terminal Help

fileio.c

Read NBYTES into BUF from FD.
number read, -1 for errors o

Lseek

This function is a cancellation poin

e _TH

reall(fd, c, 15);

sz <0) {

printf("Error:

exit(l);
printf("End o

} {

printf ("

c[sz] \@'

printf ("’

(res<0) {
ncdntElNE

RFTEL @O0

Unable

Fri19:04

fileio.c - Visual Studio Code

%d\n", sz, fd);

iptor %d\n", sz, fd);

Ln49, Col 15(7selected) Spaces:4 UTF8 LF C Linux

Fri19:04
fileio.c - Visual Studio Code

%d\n", sz, fd);
buf, nbytes)

eturn the
0 for EQF.

nd ther not marked with

Nl -G Tihie

riptor %

Ln50, Col 14 (4selected) Spaces:4 UTF8 LF C Linux

A

0

Activities - Visual Studio Code ~ Fri19:04
‘ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

iii fileioc X
W home » saura
}

seek(fd, 0,

sz = read(fd, ¢,115);
(sz <0) {
printf("Error: Unadle to read from

printf("End
} {
printf s from file iptor %d\n", sz, fd);
c[sz] =
printf

}

AR £
res = close(fd);
(res<0) {

S oo e in et eileem A AR o

\i
NPTEL ®OAO Ln50,Col17 (2selected) Spaces:d UTF8 LF C Linux &

Activities) Visual Studio Code ~ Fri19:04
fileio.c - Visual Studio Code.
Fle Edit Selection View Go Run Terminal Help

fileio.c X

home saurav > Desktop

ad(fd, c, 15);
) {

r %d\n", sz, fd);

res = close(fd);

(res<0) {
the file\n");

exit(l);
} 1
printf("File closed wi ile or = %d\n", fd);

}

HPTEL @OA 0 Ln50, Col17 (2selected) Spacesid UTF8 LF € Linux & 0

After setting the offset back to 0, we use the read system call to again read contents from this
file descriptor, we try to read 15 bytes, but because we have just written 12 bytes, it will just

read these many bytes, and it will print out the contents.

(Refer Slide Time: 5:41)

Activities - Visual Studio Code - Fri19:04
‘ fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help

fileioc X

hom [
printf(
exit(l

printf

le descriptor %d\n", sz, fd);

closing ¢ :
res = close|(fd);

(res<0) {
printf("Error: Unabl
exit(l);

} {
printf("File ¢
f

\i
NPTEL ®OAO Ln63, Col20(Sselected) Spaces:4 UTF8 LF C Linux &

Activities) Visual Studio Code ~ Fri19:04
fileio.c - Visual Studio Code
Fle Edit Selection View Go Run Terminal Help
fileio.c X
heme
I il
printf("F
cls
printf("Contents

res = close(fd);

(res<0) {
printf("Error: Unable to close the file\n");
exit(1);
} {
printf("File clos tor = %d\n",
}

NPTEL @OA O Ln63,Col25 Spacesid UTF8 LF C Linx & 0

Finally, we use this closed system call to close the file descriptor. This will remove all the
entries which are made in the open file table and the file descriptor array. And it will return 0
in case of success. Otherwise, if it returns a negative value, that means there were some error,

and that would end the program.

(Refer Slide Time: 5:59)

Activities E1Terminal - Fri19:05

- Visual Studio Code
#

fileio.c

c saurav@ubuntu-18 ~/Desktop
 file Edit View Search Terminal Help
_saurav@ubuntu-18:~$ cd Desktop/

saurav@ubuntu-18:~/Desktop$ gcc f
“Usaurav@ubuntu-18:~/Desktop$./a.out
<IFile op with file descriptor

End of reached|

main(volrote 12 bytes to file descriptor 3

Read 12 bytes from file descriptor 3

jpenContents read: Hello World

File closed with file descriptor = 3

! saurav@ubuntu-18:~/Desktop$

fd

f (fd<
pri
exi

pri

les - 01 F

NPTEL @OAD 1n63,Col25 Spacesd UTF8 LF C Linx A&

Activities E1Terminal + Fri19:05
#

fileio.c

saurav@ubuntu-18 ~/Deskiop
File Edit View Search Terninal Help

saurav@ubuntu-18:~$ cd Desktop/

Desktop$./a.out
TFile opened with file descriptor = 3
End of file reached
main(volirote 12 bytes to file descriptor 3
Read 12 bytes from file descriptor 3
onContents read:
File closed with file descriptor = 3
saurav@ublntu-18:~/Desktop$

fd

(fd<
pri
exi

pri

Sz

les ~ 01§

NPTEL @OA O Ln63,Col25 Spaces:id UTF8 LF C Linux &

Activities FTerminal ~ Fri19:05
= Visual S d
“ | Studio Code

fileio.c

N saurav@ubuntu-18:~/Desktop

File Edit View Search Terminal Help
saurav@ubuntu-18:~$ cd Desktop/
saurav@ubuntu-1i p$ gce filelo.c
saurav@ubuntu-18:~/Desktop$./a.out
File opened with file descriptor = 3
End of file reached
Wrote 12 bytes to file descriptor 3
Read 12 bytes from file descriptor 3
Contents read: Hello World
i] a file File closed with file descriptor = 3
int ith saurav@ubuntu-18:~/ $ i

open("t

main(

(fd<0) {
printf("Error: Unable
exit(l);

printf(

sz = read(fd, c, 10);
l[ca 0\ J

NPTEL @OAD 1n63,Col25 Spacesd UTF8 LF C Linix &

So, let us compile and run this program. So, we will open a terminal and compile this
program gcc fileio.c, and it creates the a.out executable let us run that executable. So, we can
see that it opened a new file with file descriptor 3. And why is it 3? Because 0, 1, 2 are
already used for standard in, standard out and standard error. And as expected, it prints out

end of file reached, because there is no data initially in this new file.

Then it writes 12 bytes to the file descriptor. And finally, again reads that 12 bytes which
were written there, and the contents are Hello World. And then it closes this file descriptor.
So, let us see if we have that test.txt file here. So, we have this test.txt file. And if we check
its contents, we can use cat text.txt. So the contents are Hello World. So, that is it for this

video. Thanks and have a nice day.

