
Design and Engineering of Computer System
Professor Mythili Vutukuru

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 28
Memory and I/O Virtualization

Hello everyone, welcome to the 20th lecture in the course Design and Engineering of

Computer Systems. So, in the last couple of weeks we have seen how memory management

and IO subsystem work in operating systems. So, in this lecture, I will briefly touch upon

how memory and IO are managed inside virtual machines when you have virtualization, and

that will wrap up our discussion of memory and IO in operating systems. So, let us get

started. So, to recap, we have seen that there are two ways of doing virtualization one is

containers and one is VMs.

(Refer Slide Time: 00:52)

So, what are containers? Containers are a way to do lightweight virtualization, where you

have multiple containers will share the same underlying OS, but they will still provide

different isolated views to processes, processes while in one container will only see the

processes in that container it will not see the processes in other containers.

Similarly, you can isolate the file system, network resources. For example, if somebody

opens a socket, in this container at a certain port number, another container also can have the

same socket at the same port number because these two are isolated from each other. So, all



such mechanisms are provided by containers. And also resource limits are enforced, how

much CPU, how much memory, how much bandwidth all of that also can be controlled.

So Linux has mechanisms like namespaces, and C groups to provide this isolation and

resource limits. And a lot of container frameworks like LXC and Docker. You may have

heard these names use this OS functionalities in order to provide this container abstraction.

And we also have a lot of container orchestration frameworks like Kubernetes, for example.

And all of these are very popular when you are running a large application. Because

application has multiple components. And these components are put in different containers

and spread across multiple machines. And these frameworks these orchestration frameworks

like Kubernetes make it easier for us to handle these different components that are spread

across multiple machines, they provide you ways to handle the lifecycle when a component

crashes, restarted, distribute these components across machines.

All of these functionality is provided by these container orchestration frameworks, which is

why a lot of real computer systems large computer systems are typically built on top of these

orchestration frameworks, so that you do not have to individually manage each component

each container on your own.

(Refer Slide Time: 02:54)

So, the next way to do virtualization is using virtual machines. So, virtual machine is actually

more heavyweight than container. You have VM which has its own OS and its own

applications. And all of these are running on another host OS or a virtual machine monitor or



a hypervisor. So this is your guest, and this is your host. And then this is running on top of

your CPU and other hardware.

So the VMM, basically virtualizes the entire hardware to each of these operating systems. So

every operating system kind of things, it is running on the underlying hardware fully on its

own, even though there are multiple such guest.

And this is a very important building block for cloud computing, in the cloud when you give

multiple users access to the same cloud server, you need this level of isolation that is

provided by virtualization. So, we have seen this concept of how do VMMs work they work

on the concept of trap and emulate. So just like multiple user space processes cannot access

hardware they trapped to the OS and the OS accesses the hardware on their behalf.

Similarly, these multiple guest operating systems also will run at a lower privilege level and

whenever they have to access the hardware, they will trap to the VMM and the VMM will

access the hardware on their behalf. So that is the basic idea of trap and emulate VMMs just

like the OS is virtualizing the CPU for processes similarly, the VMM will virtualize all the

hardware for the guest OS.

But this is the simple concept is not so easy to implement because modern existing operating

systems or CPUs are not easily built for virtualization for example, your guest OS may not

run correctly, if you run it at a lower privilege level it may expect to always run at a high

privilege level.

So in such cases, we need some extra techniques beyond this simple trap and emulate idea

which is there are many different VMMs today based on different ideas. Some VMMs use

para virtualization which is they modify the guest OS, so that it works correctly at a lower

privilege level.

Some VMMs use full virtualization that is, you cannot modify the OS code, but you will

modify the OS binary, the instructions in the OS binary you will translate them so that it

works correctly at a lower privilege level.

And finally, you have hardware assisted virtualization, which is the most recent idea, which is

where you change the underlying CPU so that no issues come up and existing operating

systems can still run without any changes, without changing the code or without translating

the binary. So let us look into a little bit more detail on hardware assisted virtualization.



(Refer Slide Time: 05:40)

We have looked at it briefly, we have seen how processes run with hardware assisted

virtualization in this lecture, we are going to even dig a little bit deeper, understand how

memory is managed, how IO happens and all of those things as well. This is a recap of

hardware assisted virtualization that we see. So modern CPUs, for example, x86 has this

VMX mode, which is a special mode in which to run virtual machines.

So, what is this VMX mode? Normally in x86, if you have your regular mode, which is called

the root mode, you have privilege level 0, 1, 2, 3. 0 is the most privileged level where the

operating system is running, 3 is where user applications are running. Now, with VMX mode,

you will create a separate mode called VMX mode which also has rings 0, 1, 2, 3. In this

VMX, ring 0 is where you will run your guest OS.

And in VMX ring 3 will be your guest applications as usual. And, in your root mode. This is

where you will run your host OS, your VMM other processes will run in ring 3, this is your

regular system. This extra modes of the CPU have been added. In x86, it is called VMX all

architectures have the support, this extra modes let you run existing operating systems

without any modification.

How does this VMX mode work? This guest OS when it is running in VMX ring 0, it is less

powerful than regular ring 0. You do not want to give the guest OS has complete control over

the hardware. Why? Because there are many guests, you do not trust them. So, that this guest

OS even though it is running in ring 0, this is actually less powerful and the VMM can

configure the guest to exit.



If something happens, if some instructions some problematic instructions are running, if

hardware is access any such thing happens, you can configure the guest to exit into the root,

into the regular mode where the VMM is running and the VMM can handle the exit, can trap

and emulate on behalf of the guest OS.

Even though the guest OS is not aware that this is happening. So the popular example of this

way of virtualization, hardware assisted virtualization is the QEMU/KVM hypervisor in

Linux. So, this hypervisor has two parts QEMU is the user space process. The hypervisor also

has a user space process to do a lot of things that can be done at the user level, you do not

want to do everything inside the kernel.

So, the QEMU part of it does whatever is possible to be done at the user space level that is it

will allocate memory, it will copy the guest OS code, it will create some new kind of RAM

for the guest OS all of that will be done and when you have to actually switch to this VMX

mode, then it will talk to the KVM kernel module.

So, your hypervisor has two parts, some part is done, which is non privileged is done in user

space. So, the QEMU runs as a user space process and this QEMU talks to KVM which is

running inside the kernel, which is privileged and this KVM will do the switch into the VMX

mode. So, QEMU has created, copied the guest OS into its memory, guest OS code and then,

when QEMU says switch to VMX mode to KVM at this point, what is happening, the CPU

core has switched to running this OS code, this guest OS code that is there in QEMU. You are

no longer running regular user space code of QEMU but you are running this guest OS code

in ring 0.

So, when KVM switches to VMX mode, it is like everything at the CPU level is

reconfigured. Your host OS stops running all the processes on the host OS stops running and

now your guest to OS directly starts running in privileged mode in VMX ring 0. And where is

the guest OS code located. It is located in QEMU itself, QEMU has set all of this up it has

copied the guest OS code it has, created the guest OS memory image, everything it has done.

And when you switch from this host mode to the guest mode, you have to still save and

restore context, now all the host OS context has to be saved the guest OS context has to be

restored. So, this is like a context with just that at the machine level it is happening your

entire host OS is being saved, and your guest OS is being run, this is called a machine switch.



And when this is done, you have to store all the values of the CPU registers everything that is

stored in a special data structure called VMCS, or VM control structure.

So, to summarize your QEMU creates some sort of a memory for the guest, allocates memory

for the guest, copies the guest OS into it just like how OS copied into RAM. Similarly,

QEMU copies the guest OS. And then with the help of a kernel module, it switches the CPU

to the VMX mode.

And in the VMX mode, the host was stops running, and this guest OS directly starts running.

And when you exit back from it, once again, you will restore back the host OS, you will

restore back everything that was happening in the host OS, because you have saved the

context, and you will restore it back.

And another thing to note is that QEMU can have multiple threads, if you want your guest

OS this code to run on multiple CPUs, how will you do it, QEMU will have multiple threads.

And on each thread, you will go into VMX mode and run the guest OS code. So, it is almost

like now your guest to OS code is running on multiple CPUs in parallel.

If your VM has four CPUs, then QEMU will create four threads and each of these four

threads will run on different CPU cores of the host OS. So that the same guest OS code is

running four times in parallel, you can do that also in QEMU. So let us just visualize this a

little bit.

(Refer Slide Time: 11:52)



So, your CPU can either run in root mode or VMX mode. In root mode, you have the

unprivileged ring 3, privileged ring 0, similarly in VMX mode. So, normally user processes

are running here, they are running in root mode in your host and QEMU is also one such user

process to the host OS, it is nothing different. It just looks like any other process.

What does QEMU do? It allocate a large amount of memory and into that memory it will

copy all the guest VM code. As far as the host OS is concerned, this looks like any other code

of a process. The host OS does not see this as any different it is any other process. And it also

creates multiple threads to execute this code in parallel on multiple CPU cores.

Now, when QEMU has set all of this up, what it will do is, it will tell KVM to switch into

VMX mode what that this is a privileged operation, you cannot do it in user space that is why

you have split it into a kernel part and a user space part. Whatever is easy, you do it in user

space part, the privileged part, you do it inside the kernel module.

So, QEMU one particular QEMU thread that is running this guest OS code will tell KVM;

“Hey, switch into VMX mode.” At this point what happens, your CPU stops running the host

OS it stops running this QEMU process, the host has scheduled QEMU process at this point

this QEMU process starts, stops running and you switch to VMX mode and you start running

this guest OS code.

KVM shifts the CPU to the VMX mode, you save whatever context whatever the register

values here and everything you save into this special area of memory called VMCS. And now

your CPU has switched into VMX mode ring 0 and now this guest OS code that QEMU has

set up in some memory that starts running and when the guest OS starts to run, of course, it

will boot up it will create its own user applications that you create a shell that shell will

spawn other processes, we have seen all of this and you keep coming back to the OS running

applications all of this will go on, until something happens, some privileged access that the

guest OS is not supposed to do until that happens you are in VMX mode.

Note that this ring 0 is not all powerful like regular ring 0, if you do something stupid, the

VMM will say stop and the guest was will exit back into KVM. Now once again, whatever

context you have saved of the host, you will restore all of that context, the guest is stopped,

the host OS starts running.

Now this KVM will see this guest has exited. Why has it exited? Maybe it needs something.

It will go back to QEMU, QEMU, will see what to do about the guest. It will handle the



event. And then once again, for example, the guest needed some IO, you will come here

QEMU will do the IO and then you might go back to the guest again. In this way, you will

keep switching between. On every CPU core this will happen independently.

And, every CPU core wherever a QEMU thread is running. It can pause the host OS, switch

to the guest OS run it and come back after some time. Note that the host was is not aware of it

at all, the host OS context is saved and restored. So, the host OS does not realize it was even

paused and some other OS run. All the host OS sees, I am running this QEMU process, that is

all.

(Refer Slide Time: 15:17)

So, the next thing that comes up is how is memory managed inside a VM. So, now you have,

say your guest virtual machine is running some processes, which have its own virtual

addresses, we have seen this, and the guest has a lot of RAM. And from this RAM, it will

assign physical frames and it will give to the various guest processes for their code data,

stack, heap, whatever it is, the guest OS is doing this.

But whatever RAM that the guest OS thinks it has is not actually physical RAM the guest

OS, when it sees a physical address of 0, it is not actual physical address of 0, why, because

there are multiple such guests running, it is not just one guest that is running, this is not the

only OS running that has access to all the RAM. This is in fact multiple such guests are

running and this guest’s memory is in fact part of a process, part of the QEMU user space

process.



So therefore, what the guest thinks is a certain physical address is actually not the actual

physical address in RAM, there is another layer of indirection, mapping from this guest

physical to the host physical addresses.

So, the guest OS whatever page tables it has, they keep track of this mapping from guest

virtual address space, guest process virtual addresses to guest physical addresses that the

guest knows about. But whatever memory you have given to a particular guest, where is it

actually in RAM that only the host or the VMM knows about.

Because this guest physical memory is not actually, you have not given any guests full access

to the RAM, it is just part of the memory of a regular, QEMU process, that is all. And

therefore, that also is mapped into some other host physical address is assigned to it and it is

mapped to a different set of addresses.

So, when you translate addresses, you have to go from guest virtual address using this page

table, you will translate into guest physical address. And then this guest physical address, the

VMM will translate into host physical address, only then you can access actual RAM that is

there on your machine.

(Refer Slide Time: 17:32)

So, the problem of memory virtualization how you manage memory inside a VM has gotten

more complicated due to one more layer of virtualization here. The guest page table has the

guest virtual to guest physical mapping and the VMM has this guest physical to host physical

mapping.



Why? Because the VMM knows I have given this memory to this guest, I have given that

memory to that guest it knows where it has put the guest's memory, where it has put whatever

the guest thinks as its RAM, where it has put in actual host physical memory only the host

OS and the VMM know.

So, there will be one more set of translations like this. So now, you have two different page

tables. So, which page table will the MMU use? There are two ways. One thing that the

VMM can do is, it can create a combined mapping. This guest virtual address is this guest

physical address, you look this up in this table. Finally, from a guest virtual address to the

final host physical address, you can create a mapping, combined mappings you can create and

put them in what are called Shadow page tables, that is extra page tables, not the guest page

table but an extra page table the VMM can create.

And keep updating this page table as the guest updates its page table you keep updating the

shadow page table and this shadow page table will be used by the MMU. So whenever some

virtual address is being used, you will use this translation to translate it into actual RAM

locations. This is one idea.

The other idea is instead of the VMM combining these page tables, you can once again tell

the MMU only look here are two different page tables, you combine them yourselves. That is

the MMU hardware can be made aware of virtualization, you can say here are two different

page tables. That concept is called extended page tables.

And it can take pointers to two separate page tables and walk both page tables during address

translation. Of course this is more efficient because the hardware is doing the work but it also

requires some hardware support. So next we are going to understand how IO virtualization

happens that is when a guest does IO what exactly happens.



(Refer Slide Time: 19:48)

So, we have seen that once again just like how guest cannot be given full access to RAM.

Any guest OS cannot be given full access to IO devices also because multiple VMs are

sharing the same server and there are security issues involved. So when the guest needs to

access IO, it has to go through the VMM.

And how do we do this? There are many ways of doing it. The simplest is what is called IO

emulation. That is, the guest OS tries to do any IO operation, for example, in VMX ring 0,

then this will trap into the VMM. There will be a VM exit; you will trap to the VMM. And

then the VMM, the QEMU user process, for example, if the guest wants to open a file, the

QEMU user process can open a file, if the guest wants to read the QEMU user process can

read a file. You can just emulate whatever the guest wants to do inside the VMM.

And similarly, every time an interrupt occurs, the VMM can first look at the interrupt and if it

is for the guest, it can then inject the interrupt when the guest starts it can tell the guests that

look you have an interrupt. So, every time there is an IO command given to the device or an

interrupt occurs, you will exit to the VMM, VMM will handle it.

Similarly, when IO data comes from the device also, you will first DMA it into the VMM.

And then the VMM will give it to the guest, everything goes through the VMM. So, this is a

simple idea, It works reasonably fine for slow IO devices. But once you have a very fast IO

devices, there will be so many VM exits that it might slow down your VM significantly, and

you are also copying data DMAing it here, then copying it here, this overhead might get a

little too much for high speed IO devices.



So, what you do for high speed IO devices is, today you have special device drivers available

that are called virtio device drivers. so these are device drivers that are optimized for

virtualization inside your guests, you do not use the regular device drivers that come with

your operating system, but you will install new device drivers.

And what do these virtio device drivers do instead of exiting for every IO operation, what

they will do is they will batch IO requests, you will collect multiple IO requests instead of

regular device driver anytime you have to give a command to the disk it will just give the

command to IO device disk or whatever.

But these virtio device drivers know that they are not accessing the real hardware. So

therefore, they will collect all these IO requests and once per batch, they will exit into the

VMM, so that you avoid these frequent back and forth between the VMX mode than the

regular mode.

Similarly, when you have to share IO data between the guest and the host, you will set up a

separate shared memory region into which VMM and the guest both have access to and they

can read the shared data. So, these are all extra changes needed to device drivers which are

optimized for virtualization.

So the other technique is instead of going through the VMM and the host even in virtio you

are going through the host is that it is optimized. Another way you can give a guest VM its

own slice of the IO device. If the IO device supports this, you can give each VM a slice of the

IO device, so that they are not interfering with each other.



(Refer Slide Time: 23:12)

So, an example is modern network cards come with a feature called SR-IOV for single root

IO virtualization. In simple terms, what this means is that you can make one network card

look like multiple different network cards, which are isolated from each other. And you can

give each network card to a separate VM.

So, traffic coming to this network card goes only to this VM, traffic to this network card goes

only to this VM in this way they are not interfering with each other, at the same time you do

not have to give data to the host VMM first and then copy to the VM. So, what these SR-IOV

network cards do is they have separate NICs, which are of course configured these slices are

configured by the VMM. But once you configure them a VM has exclusive access to its slice.

For example, things like packet DMA, they will be directly DMA into the VM memory you

no longer DMA to the host memory first and then copy to the VM memory. But this is not

straightforward. Why? Because the guest OS can only provide addresses of the DMA buffers

in the form of guest physical addresses.

So in order for the NIC to do a DMA into memory, you need to know what is the physical

address of this DMA buffer only then can the NIC copy into it. But if the guest OS is giving

it dummy physical addresses guest physical addresses which are not correct, how will the

DMA happen into RAM it cannot happen.

Therefore, the solution for this is that SR-IOV capable NICs also have something like an

MMU built into them, which will translate from this guest physical to actual host physical



addresses that is they are doing the job of the MMU also, in addition to doing DMA, you are

also doing the job of the MMU you are getting some pointer to a page table and you are

translating addresses so that you can correctly do DMA into physical memory. So that with

this IO MMU, you can directly DMA data into the guest OS DMA buffers, so that you do not

have to go through the host OS for DMA.

So this is a very advanced technology that requires a lot of hardware support. So, these kind

of ideas are called device pass through techniques, that is, you are bypassing the VMM. And

directly the devices being assigned to the VM. So, such techniques while they are efficient,

they require more hardware support.

On the other hand, techniques like virtio are just device driver upgrades, in your VM, you do

not change anything in the hardware, you just install virtio driver, you get better performance.

So there is a trade off. Are you willing to change the hardware? Or are you only sticking to

software level changes?

So based on these different parameters, you can decide for your application if you are running

inside a VM, then which techniques should you use for IO virtualization. So in this lecture,

we have just done a recap of containers and VMs that we have studied in an earlier lecture.

And we have added a few more concepts to what we have studied before.

(Refer Slide Time: 26:28)

Specifically, we have seen how memory and IO are virtualized. So now you have all the

techniques that are needed to virtualize the CPU, memory and IO, all the techniques you have



understood and different VMMs use different combinations of these techniques. Some may

use full virtualization, paravirtualization or hardware assisted, some may use extended page

tables or shadow page tables or SR-IOV or virtio. It really depends different applications

depending on the need of the application and the technology in the VMM different techniques

can be used.

So, as a small exercise, install a VMM, run a few VMs and try to understand by reading the

documentation of the VMM what techniques it is using for CPU, memory and IO

virtualization. For example, you may notice some special virtio device drivers that are

running. Are they running? Are you using? Does your hardware have SR-IOV capability?

Are you using hardware assisted virtualization? So understand these things for any VMM that

you are using in order to see an application of these concepts in your real life? So that is all I

have for this lecture. Thank you, everyone.

And we will see you in the next week when we cover a completely new topic of how

networking works, how computer networks specifically the internet works. That is what we're

going to see starting next week onwards. So, the past three weeks have completed our

discussion of operating systems and we will move on to the next set of topics in the course.

Thank you all and see you next week.


