Design and Engineering of Computer Systems
Professor. Mythili Vutukuru
Computer Science and Engineering
Indian Institute of Technology, Bombay
Week 3, Tutorial 3
Memory allocation using mmap

Hi everyone, in this video we will learn how we can use the mmap function to allocate memory

in a C program.

(Refer Slide Time: 00:25)

)

Selection

mmap.c

mmap.c

X

INT, intHandler);
getpagesize();
getpid();

print

printf(

region = mmap(

100*pagesiz

PROT READ|PROT WRITE,
P ANON|MAP PRIVATE,

(region AP FAILED) {

w Co R

printf(

main(

signal (SIGINT, intHandler);

pagesize = getpagesize();

getpid

printf(
printf("¥

region = mmap

PROT READ|PROT WRITE,
P P PRIVATE,

The 1528

mac- Vi

tudio Code

n*, pagesiz

™

© nmapc. V

Spaces:2 UTF8

v 1528
ual Studlo Code

pagesize);

n27,Col42 Spaces2 UTF8

z

v
-
3

> 5 m

printf(
printf(

v
9
a
@

In33,Col13 Spaces2 UTF8 F C & 0

So, I have written this mmap dot ¢ program here. Let us open this with visual code. So, this is the
mmap dot ¢ program. I will go over the code and then we will compile and run this. So, here is

the main function I defined a signal handler I will come to this later.

So, first we get the page size of the system using the get page size function. So the page size is
generally 4 kb which is 4096 bytes. Then we define the pid using the get pid function and this
will return the pid of the process which is running this code. Then we use printf to print out the
page size and the pid of this program and this is where we are using the mmap function to

allocate memory.

(Refer Slide Time: 01:18)

The 1529

mmac- Vissal Studio Code

getpid();

printf(2u n", pagesize);
printf("4

region
106*

1ze,
PROT READ|PRO
M MAP PR

(region MAP FAILED) {

perror();

} {

printf(

(n34,Col9{asolected) Spacess2 UTF8 F C &

The 1530
@ nmapc- Visual Stodlo Code

printf(n", pagesize);
printf(

(region == MAP FAILED) {

perror()

tn37,Col 13 (8selected) Spaces:2 UTF8 LF C &

So, here we have defined this char * region which is a pointer to the memory and this mmap
function takes first argument as the address at which we want to allocate memory and the system
will try to assign us memory at that particular address. But we have given null here so it will just
give us the memory at any available address. Then the second argument defines the size of the
memory that you want to allocate. So here, we have given 100 times the page size which means

it will be around 400 kilobytes of memory.

So, we are allocating about 400 kilobytes of memory. Then this defines what are the permissions

on that memory. So, we have read and write permissions on that memory region. Then this

indicates whether this memory is backed by some file or not, so we have used map anonymous

which means that it is not backed by any file it is just a chunk of memory.

And it is private which means that it is not shared with other processes and because this memory
is not backed by any file, so we use minus 1 for file descriptor because there is no file with
which we want to back this memory and we use 0 as offset. So, these two arguments are used

when the memory region is actually backed by some file.

(Refer Slide Time: 02:42)

~-Joe 29828

printf(
printf(

region = mmap(
pagesize

READ | PROT
ON|MAP_PRI\

ge
PROT READ|PROT WRITE,
MAP_ANON|MAP_PRIVATE,

(region

perror(

{
printf(

MAP_FAILED) {

The 1931
@ mmapc- Visoal Studlo Code

, pagesiz

n42,Col 27 (10 selected) Spaces:2

The 1531
@ mmapc- Visual Studlo Code

Ln 46, Col 40 (7 solected) Spaces:2

UTF8

UTF8

The 1532
© nmapc- Visual Stodlo Code

(region == MAP FAILED) {
perror(Pl
{

printf(
(1) {

1<160; 1++){
sumt=region(1*pagesize);
}
sleep(l);
}

LnS),Col S (T9selected) Spaces2 UTF8 LF ¢ & 0O

The 1533
© nmapc- Visual Stodlo Code

(region
perror(

} {
printf(

}

(1) {

1<160; 1++){
sunt=region(i*pagesize);
}
sleep(1);
}

D Restricted Mod A Lnd9, Col3(119selected) Spacess2 UTFE LF C @

Now we check if the return value is map failed then we print out an error could not map and
return otherwise we print out that we have mapped hundred pages at this particular address. And
then we have this while loop what this while loop does is it iterates over 0 to 100 and accesses
the first byte of every allocated page and adds it to sum. So, this is just to make sure that we are

accessing every page and then it sleeps for one second and it repeats it again and again.

(Refer Slide Time: 03:14)

The 1533

@ mmanc - Visual Studlo Code

perror(
exit(l);

printf(
exit(o);

main(
signal(SIGINT, intHandler);

getpagesize();
getpid();

selected) Spwces2 UTF8 IF € & Q

The 1533
© meapc- Visual Stodlo Code

0.
(]
w
"

-0 @ e

intHandler (dusmy) {

@

munmap(region, 160*pagesize);

printf(
exit(0);

In13,Col 28 (6selected) Spaces2 UTF8 LF € @

So, the program will be stuck here so that we can analyze certain aspects of the program. But
what if we want to exit the program then we can use control plus ¢ and because we have mapped
some memory and we need to unmap that before exiting the program. So, we have defined this
signal handler which handles the SIGINT which is control plus ¢ and what this handler does is it

unmaps the memory region using unmap call.

And it takes the address of the region and the size of the memory and if the unmap result is not

equal to 0, then we print out the error that could not unmap otherwise the printout are

successfully unmapped and then we exit the program. So, that is the complete mmap dot ¢ code.

So, let us compile it and execute it.

(Refer Slide Time: 04:08)

(region

error(
ety S ubunty- 18 -Desktop

{ gcc mnap.c
printf ("} s ¢ - .[a.out
\ e { s

ress 6x7f49f7¢32000
ACSuccessfully
saurav@ubuntu-1i

sleep(l);
}

So, I will open the terminal and compile it using gcc mmap dot ¢ and then I will run the a dot
out. So, it shows that system page size is 4096 bytes pid of this process is 19871. And then we
have mapped some 100 pages at this particular virtual address and we can use ctrl c to exit the
program and it prints successfully unmapped. So that is the mmap dot ¢ program. Now let us try

to analyze this program further.

(Refer Slide Time: 04:40)

z
3

-
- 3

The 1504
@ meapc. Visua! Stodio Code

9

S B m

getpagesize();
getpid();

- @ ¢

@

printf(€ n*, pagesize);
printf("“My

n33,Col 10 (248 selected) Spaces2 UTF8 LF € & ()

The 1535

> 85 m

©a@ @ ¢

sleep(l);
}

So, what I will do is I will comment out this mmap part so that it does not allocate any memory
and I will comment out this part as well and this part as well. So now, the program just prints out
the page size and pid and just keeps running this while loop. And I will also comment out the

signal handler. So now, let us compile this program and run this. So, it shows 1995 as the pid.

(Refer Slide Time: 05:17)

-
-

>SEm

S gcc nmap.c
S ./a.out
Systen page size: 4096 bytes
My pid: 19871
Mapped 160 pages at address 0x7f49f7¢32000
ACSuccessfully un d
@ubuntu-18: sktop$ gcc mmap.c
saurav@ubuntu-18:~/D $./a.out
Systen page size: 40
My pid: 19925

200 @ ¢

S

SuravBubunte- 18

buntu-18: s -0 pid,vsize,rss,%nen --pid 19925
VsZ {E}

19925 4512 768 0.0

saurav@ubuntu-18:~$ ||

2 UTF8 F € R 0

The 1538

WUIGRYIE -

Fle E6C View Seurch Terminal Heb

saurav@ubuntu-18:~$ ps -o pid,vsize,rss,%nen --pid 19925
0] RSS SMEM

19925 4512 768 0.0

saurav@ubuntu-18:~$ |

L0 @ 2B W

Sy

NPTl O RestrictedMode @ 0A D n25,Col15 Spwces2 UTF8 LF € & O

Now I will open another terminal and I have written this command here so this is just the ps
command and this hyphen o is used to define the output. So, I want pid the virtual memory size
which is the vss and RSS which is the resident set size and the percentage of memory used in the

output of this ps command. And I want all of this information for this particular pid.

So, I will change this pid with 19925. So, this shows me VSZ which is the virtual memory size
this is the amount of memory which a program can access which is 4512 kilobytes. And then,
when a program actually uses some memory that is when it adds up in RSS which is the resident
set size. So, RSS is 768 kilobytes which means that program can access 4512 kilobytes of
memory but it is actually using just 768 kilobytes of the memory.

(Refer Slide Time: 06:17)

Actvithes) Terminal « The 1999

Saurav@ubsnte- 18 -/Desktep

2828 C

saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,':'

PID VSZ RSS WMEM =
19925 4512 768 6.0
sauravgubuntu-18:~$

gcc nmap.c
’ [NEN

Systen page size: 4096 bytes

My pid: 19871

Mapped 160 pages at address 0x7f49f7¢32000

gcc nmap.c
saurav@ubuntu-1 Desktop$./a.out
Systen page size: 4096 bytes
My pid: 19925
e
saurav@ubuntu-18:

a0 @€

In25,Col1S Spaces2 UTF8 LF C

Activities) Visual 31 . The 1539
© mmapc- Visual Stodlo Code

(region MAP FAILED) (
perror(H
1;
} {
printf(f , region);

sleep(1);

) Restricted Mode Ind7,Col4 (139 selected) Spaces2 UTF8 U

Activities & Terninal +

>
-

SravQubsnte- 1k /Dasktep

> 5 m

saurav@ubuntu-18:-$ ps -o pid,vsize,rss,%. S

PID VSZ RSS XMEM $ -18: k 9cc nmap.c
19925 4512 768 6.0 S
saurav@ubuntu-18:~$ ps -0 pld'VSlze'rss"My oid: 19871
Mapped 100 pages at address 6x7f49f7¢32600
ACSuccessfully ui d

)
9
a
1

9cc nMAp.C

My pid: 19925

e

saurav@ubuntu-

saurav@ubuntu-

Systen page si

My pid: 20226

Mapped 160 pages at address ©x7f028a837000

Sy

}

NETEL O RestrictedMode D040 n25,Col6 Spaces2 UTF8 IF ¢ & 0

Now let us stop this program and let us uncomment the mmap system call so here I will
uncomment these two. And I will also uncomment the signal handler. So, here it will map some
400 kilobytes of memory but I will keep this commented so that we are not actually using that

allocated memory and it should just show up in the VSZ and not in RSS. So, let us compile and

let us run this command again with 2026 as pid.

(Refer Slide Time: 06:58)

Acthties # Terminal «

QUG-8 ~

Fle G View Seach Terminal e

saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%nem --pid 19925
PID VSZ RSS XMEM

19925 4512 768 0.0

saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%nem --pid 20226
PID VSZ RSS XMEM

20226 864 0.0

saurav@ubuntu-18:~$ |

S2SE8 S

©ade@ e

P © Restricted Mod A 1n25,Col6 Spacess2 UTF8 F ¢ & 0O

Activities) Terminl + The 1540

v
-

sauravgubsnte-1: -/Desktep

saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%nei »
PID VSZ RSS XMEM [} -18:~ gce nmap.c

S8 M@

19925 4512 768 6.6
saurav@ubuntu-18:~$ ps -o pid,vsize,rss,%neSy
PID VSZ RSS XMEM My pid: 1
20226 4912 864 0.0 Mapped 160 pages at address 6x7f49f7¢32000
saurav@ubuntu-18:~$ d
9cc nmap.c

20 @ e

(EEE)

saurav@ubuntuy-18:

Systen page size:

My pid: 20226

Mapped 160 pages at address 6x7f02838a7000
ACSuccessfully unmapped
saurav@ubuntu-18:~/Desktop$

{
wrreL O RestrictedMode 04 n25,Col6 Spaces2 UTF8 LF C & 0

Q

The 1540
mmac - Viseal Studio Code

(region == MAP_FAILED) {

perror(H

{
printf ("}

sleep(1);

locted) Spwes2 UTFE IF C A ()

So, here we see that VSZ did increase by 400 kilobytes which is the 400 kilobytes extra memory
that we allocated using the map call and RSS just increased by approximately 100 which is due
to uncommenting the other parts of the code. And it does not include the 400 kilobytes of
memory which was allocated using mmap. Now let us stop this as well and let us uncomment the

remaining part now we are allocating memory and we are also accessing the memory in a while

loop.

(Refer Slide Time: 07:34)

Adtivities & Teenimal +

D)

v * SauravBubente- 1k +/Desktep
saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%nefi i

PID VSZ RSS XMEM / gce nmap.c
19925 4512 768 0.0 saurav@ubuntu-1
saurav@ubuntu-18:~$ ps -o pid,vsize,rss,%neSysten page size: 4096 by

PID VSZ RSS %MEM My pid: 19871
20226 4912 864 0.0 Mapped 100 pages at address 0x7f49f7¢32000
saurav@ubuntu-18:~$ S

S B2 m

-

gCcc nmap.c

0@

gcc mmap.c
WERS

Systen page size: 4096 bytes

My pid: 20226

Mapped 160 pages at address 6x7f628a8a7600

ACSuccessfully unnapped

aurav@ubuntu-18: gcc mmap.c

saurav@ubuntu-1 NERS

Systen page size: 4096 bytes

My pid: 20279

idppcd 100 pages at address 0x7f8d55f5beos

n48,Col3 Spaces2 UTF8 LF C

The 1541

S IVOAUNY-18 ~

saurav@ubuntu- $ ps -0 pid,vsize,rss,%nem --pid 19925
PID VSZ RSS ¥MEM

19925 4512 768 6.0

saurav@ubuntu- $ ps -0 pid,vsize,rss,%mem --pid 20226
PID VSZ RSS ¥MEM

20226 4912 864! 0.0

saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%nem --pid 20279
PID VSZ RSS XMEM

20279 4912 1432 0.0

saurav@ubuntu-18:~$

SEm

20 @ e

) Restricted Mode (@ In48,Col3 Spaces2 UTF8 F C

Activities) Terminil =

-
-

Sauravgubsnte 18 -/Desktep

SEm

saurav@ubuntu-18:~5 ps -0 pid,vsize,rss,%ne e o View Sewch Terminal Help

PID VSZ RSS XMEM s - gce nmap.c
19925 4512 768 0.0 . .Ja.out
saurav@ubuntu-18:~$ ps -0 pid,vsize,rss,%neSy

PID VSZ RSS XMEM My pid: 19871
20226 4912 864 0.0 Mapped 100 pages at address 0x7f49f7¢32000
saurav@ubuntu-18:~$ ps -o pid,vsize,rss,%ne*CSuccessfully unnapped

PID VSZ RSS XMEM saur. - gce mmap.c
20279 4912 1432 0.6 saurav@ubuntu-1 .
saurav@ubuntuy-18:~$ Systen page size: 4096 bytes

My pid: 19925

20 @ e

(S)

Systen page size:

My pid: 20226

Mapped 160 pages at address 6x7f02838a7000
ACSuccessfully unnapped

saurav@ubuntu-1: S gcc nmap.c
saurav@ubuntu-1 .Ja.out

Systen page size: 4096 bytes

My pid: 20279

Mapped 160 pages at address ©x7f8d55f5beoe
ACSuccessfully unnapped
saurav@ubuntu-18:~/Desktop$ I

n48,Col3 Spaces2 UTF8 F € & (

So now, let us compile and use this 20279 as the pid here. So now, you can see that there is a
significant increase in RSS because now it includes the 400 kilobytes of memory that is being

accessed by the program so we see a significant increase in both VSZ and RSS. So, that is it for

this video thanks and have a nice day.

