
Design and Engineering of Computer Systems
Professor. Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Week 3, Tutorial 3
Memory allocation using mmap

Hi everyone, in this video we will learn how we can use the mmap function to allocate memory

in a C program.

(Refer Slide Time: 00:25)





So, I have written this mmap dot c program here. Let us open this with visual code. So, this is the

mmap dot c program. I will go over the code and then we will compile and run this. So, here is

the main function I defined a signal handler I will come to this later.

So, first we get the page size of the system using the get page size function. So the page size is

generally 4 kb which is 4096 bytes. Then we define the pid using the get pid function and this

will return the pid of the process which is running this code. Then we use printf to print out the

page size and the pid of this program and this is where we are using the mmap function to

allocate memory.

(Refer Slide Time: 01:18)



So, here we have defined this char * region which is a pointer to the memory and this mmap

function takes first argument as the address at which we want to allocate memory and the system

will try to assign us memory at that particular address. But we have given null here so it will just

give us the memory at any available address. Then the second argument defines the size of the

memory that you want to allocate. So here, we have given 100 times the page size which means

it will be around 400 kilobytes of memory.

So, we are allocating about 400 kilobytes of memory. Then this defines what are the permissions

on that memory. So, we have read and write permissions on that memory region. Then this



indicates whether this memory is backed by some file or not, so we have used map anonymous

which means that it is not backed by any file it is just a chunk of memory.

And it is private which means that it is not shared with other processes and because this memory

is not backed by any file, so we use minus 1 for file descriptor because there is no file with

which we want to back this memory and we use 0 as offset. So, these two arguments are used

when the memory region is actually backed by some file.



(Refer Slide Time: 02:42)



Now we check if the return value is map failed then we print out an error could not map and

return otherwise we print out that we have mapped hundred pages at this particular address. And

then we have this while loop what this while loop does is it iterates over 0 to 100 and accesses

the first byte of every allocated page and adds it to sum. So, this is just to make sure that we are

accessing every page and then it sleeps for one second and it repeats it again and again.



(Refer Slide Time: 03:14)

So, the program will be stuck here so that we can analyze certain aspects of the program. But

what if we want to exit the program then we can use control plus c and because we have mapped

some memory and we need to unmap that before exiting the program. So, we have defined this

signal handler which handles the SIGINT which is control plus c and what this handler does is it

unmaps the memory region using unmap call.

And it takes the address of the region and the size of the memory and if the unmap result is not

equal to 0, then we print out the error that could not unmap otherwise the printout are



successfully unmapped and then we exit the program. So, that is the complete mmap dot c code.

So, let us compile it and execute it.

(Refer Slide Time: 04:08)

So, I will open the terminal and compile it using gcc mmap dot c and then I will run the a dot

out. So, it shows that system page size is 4096 bytes pid of this process is 19871. And then we

have mapped some 100 pages at this particular virtual address and we can use ctrl c to exit the

program and it prints successfully unmapped. So that is the mmap dot c program. Now let us try

to analyze this program further.

(Refer Slide Time: 04:40)



So, what I will do is I will comment out this mmap part so that it does not allocate any memory

and I will comment out this part as well and this part as well. So now, the program just prints out

the page size and pid and just keeps running this while loop. And I will also comment out the

signal handler. So now, let us compile this program and run this. So, it shows 1995 as the pid.

(Refer Slide Time: 05:17)



Now I will open another terminal and I have written this command here so this is just the ps

command and this hyphen o is used to define the output. So, I want pid the virtual memory size

which is the vss and RSS which is the resident set size and the percentage of memory used in the

output of this ps command. And I want all of this information for this particular pid.

So, I will change this pid with 19925. So, this shows me VSZ which is the virtual memory size

this is the amount of memory which a program can access which is 4512 kilobytes. And then,

when a program actually uses some memory that is when it adds up in RSS which is the resident

set size. So, RSS is 768 kilobytes which means that program can access 4512 kilobytes of

memory but it is actually using just 768 kilobytes of the memory.



(Refer Slide Time: 06:17)



Now let us stop this program and let us uncomment the mmap system call so here I will

uncomment these two. And I will also uncomment the signal handler. So, here it will map some

400 kilobytes of memory but I will keep this commented so that we are not actually using that

allocated memory and it should just show up in the VSZ and not in RSS. So, let us compile and

let us run this command again with 2026 as pid.

(Refer Slide Time: 06:58)



So, here we see that VSZ did increase by 400 kilobytes which is the 400 kilobytes extra memory

that we allocated using the map call and RSS just increased by approximately 100 which is due

to uncommenting the other parts of the code. And it does not include the 400 kilobytes of

memory which was allocated using mmap. Now let us stop this as well and let us uncomment the

remaining part now we are allocating memory and we are also accessing the memory in a while

loop.



(Refer Slide Time: 07:34)



So now, let us compile and use this 20279 as the pid here. So now, you can see that there is a

significant increase in RSS because now it includes the 400 kilobytes of memory that is being

accessed by the program so we see a significant increase in both VSZ and RSS. So, that is it for

this video thanks and have a nice day.


