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Hello everyone welcome to the fifteenth lecture in the course design and engineering of

computer systems. So, throughout this week we have understood about how programs access

memory in this lecture we are going to put all of these concepts together recap them and try to

think about how to optimize the performance of the program with respect to memory access. So,

let us get started so this is a recap of what we have studied so far spread over multiple lectures in

this course, which is when you do a memory access.
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When the CPU requests some instruction or data at a certain virtual address what happens, the

first step that happens is we will check the CPU caches. Now CPU caches store data either using

the virtual address or the physical address but that complication let us ignore for now. So, let us

assume that the first step in a memory access is checking the CPU cache if the data is present or

not.

And if the data is present in the CPU cache so the CPU checks one or more layers of its caches

L1, L2, L3 and so on it will check L1 if the data is not there L2, L3 and so on. If the data is

present in any of these caches, then it is a cache hit the CPU has its instruction or data it can



proceed. If not, then the CPU will have to go to main memory to fetch the data, so this is what

we have seen.

And the other thing that we have seen is that recently accessed memory is stored in 64 byte cache

lines in all of these caches. So, this is in the granularity of 64 bytes and the main principle that

the CPU cache is uses locality of reference. If you have recently accessed something, then there

is a very likely chance that you want to access it again in the future immediately. Therefore, it is

worth keeping it around in these caches.

And if you have a cache hit, then your application performance is going to improve significantly,

because memory access takes a long time whereas caches can be accessed much more quickly.

So, this is the main idea of CPU caches and there are multiple levels of caches and in these

multiple levels some caches are private to a core whereas, some other caches are shared across

multiple cores.

For example, typically in today's system you have L1 and L2 cache that are separate for each

core say core C0, C1 has its own L1, L2 cache and both these cores share a common last level

cache or L3 cache. So this is typically the architecture today different systems can have different

architectures. So, when you have these multiple levels of cache some being private and some

common across cores you also have a slight complication we have also seen this before.

Which is if C0 has read some memory contents into its L1 cache there is some memory location

x here and C1 also wants to access x, it cannot go to DRAM and get it it must get it from C0

because C0 may have a modified copy of this memory location. So, you need some coordination

across CPU cores to exchange data and this is called the cache coherence protocol or cache

coherence mechanism.

This is needed to ensure a consistent view of memory so if C1 goes to memory and gets this

location x again, then it may see an incorrect or an inconsistent or a stale value of the memory

location. Therefore, the cores need to be talking to each other C1 needs to know who all have

this memory location in their private caches all of this needs to be kept track of which is a slight

overhead.

But, modern computers do it in order to provide correct access to main memory. And this cache

coherence mechanism of course adds an extra overhead to memory access it is not just checking



the caches if it's a cache hit sometimes checking the cache also requires talking to other CPU

cores talking to other caches also. So this is a recap of what happens on a memory access with

respect to CPU caches.

Now let us see if you are a programmer you are building a large computer system and you want

to optimize the usage of cache in your system how would you go about doing that. Note that

cache hit rate is one of the main determinants of performance. If you have a good cache hit rate

your application can execute CPU instructions faster. If you have a poor cache hit rate, then your

applications performance will be significantly slowed down. So therefore, this is important and

how do we do this here are a few tips for you.

(Refer Slide Time: 04:54)

Of course, this is a detailed discussion by itself but here are some simple things you can keep in

mind to optimize the cache hit rates. So, one thing you can do is align data structures to cache

lines and there are either programming language primitives or compiler hands many ways to do

this. But the main idea is your if you have a data structure try to align it to the start of the cache

line.

So, suppose you have you know 64 bytes and the next 64 bytes here do not let your data structure

go from here to here. So, because why because when you access this data structure this cache

line as well as this cache line both have to be gotten into memory. Instead, write your data

structure at an address that is aligned with 64 bytes so that your data structure fits in one cache



line and you can just bring one cache line into one of the caches and your entire data structure is

there.

So, how do you pick the address of your data structure to be a multiple of 64 bytes so that it is

aligned. There are ways to do it depends on the programming language you are using or the

compiler you are using there are different ways to do it. So, the other thing is store the frequently

accessed variables together in the same 64 byte cache line.

Suppose there are two integers that you will always access together, then put them on the same

cache line so that when you access one the other is also already in cache the next time you access

the second one you do not have to go to memory again it will be a cache hit so this is another

thing to do.

Then the other thing what you can do is write code such that the working set size you know

which is whichever instructions or data structures you are frequently using this working set size

try to make sure if possible that it fits into one of your CPU caches. Of course this is not always

possible what do you do if you have a large working set size you cannot compromise the

correctness of your program but where possible try to work with a small amount of data that fits

into your CPU caches.

So, that once you start working with that data from the next time onwards it will be there in

cache and it will be a cache hit. So, there are ways to write code to increase the locality of

reference. For example, if you have a matrix consisting of multiple rows and columns and it is

stored in memory like this all this row then this row then this row it is stored in memory like this.

So, instead of accessing a matrix like this column wise instead of accessing entries like this, what

you can do is you can access entries like this so that when you start accessing this entry all of

these are also there in your cache line, then when you start accessing this entry all of this is there

in your cache line. In this way if you access it row wise you will have a greater locality of

reference.

Similarly, another way is if you have a for loop for i equal to something do something on some

array and again at a later point you have another for loop again you are doing something on this

array. What you can do is you can merge both these because once you have executed this for

loop this array is in your cache.



Then similarly, the next operation also do it here itself so that you do not have to you know evict

this out of cache and bring it back later. So of course all of this is assuming it does not impact the

correctness of your program you should not write wrong logic simply to improve your cache hit

rates. But where possible these are some of the things to keep in mind when you are accessing a

large data structure try to think can I make my code in such a way that the locality of reference

improves.
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Now the other thing concerns multi-core access when you have multiple cores to the extent

possible avoid cross core cache coherence traffic that is, if you have a thread T0 running on core

C0 and you have a thread T1 running on core C1 both of them to the extent possible each core

will have its own private caches and so on. So, make sure to the extent possible that this thread is

using different set of data and this thread is running on a different set of data because if both of

them use the same data then there will be some cache coherence traffic.

So, we want to ensure as far as possible again without compromising correctness as far as

possible ensure that the threads of a program access their own separate slices of the data. So,

there is a concept called true sharing which is both threads T0 and T1 both are accessing the

same variable, thread T0 and T1 both want to access the same integer or variable x that is true

sharing.



The other thing you have to watch out is what is called false sharing which is on the same cache

line thread T0 is accessing this variable x and thread T1 is accessing this variable y. So, you

might think as a programmer or they are accessing different variables so it is okay they are not

sharing data.

But both these variables are on the same cache line so therefore what happens T0 will access x

then this cache line will be in the private cache of core 0 then when T1 needs to access y again

the same cache line is pulled here then the cache line is pulled here cache line is pulled here this

cache line will bounce across course. Because caches store data at the granularity of cache lines

you will not get just a piece of the cache line into cache you will get the entire cache line.

So, different threads of a program to the extent possible make their data to be on separate cache

lines this will avoid bouncing of this cache line across course. And of course, as far as possible

just avoid any shared data between threads because when the threads are sharing data you will

need some kind of locking.

So, when two threads access the same variable you have to lock you have to acquire a lock you

have to wait for a lock this involves its own overheads. Then the lock variable itself we have

seen how locks are implemented you use a variable and you use an atomic instruction that

updates that variable, so that variable itself can bounce across different course.

So which is why to the extent possible try to avoid locking between threads but then you might

ask how do I do it I mean locking is needed for correctness. So, there are many techniques there

is some recent research on locks that use different lock variables on different cores so that you do

not have this cache line bouncing across course when you try to acquire a lock.

There is some research on these are called scalable locks right so these are called scalable locks

because you no longer have this cache coherence between cores and your performance scales

with the number of course. There is also implementations of data structures which are called lock

free data structures that is these data structures like linked list they will insert delete elements for

you in the same shared link list but without using locks they use some clever tricks like hardware

atomic instructions but not actually locks so that your locking overhead is avoided.

So, there are this is a active area of research and there are many ideas out there on how to reduce

lock contention between threads and if your program is seeing a lot of this lock contention you



might want to explore some of these ideas in order to decrease the amount of cache coherence

traffic and decrease the overhead in your system. Now moving on so if there is a cache miss what

happens next, so this is the story of memory access that we have studied so far you first check

caches if there is a cache miss CPU has to fetch the contents from main memory.

(Refer Slide Time: 12:43)

So when you have to fetch something from main memory first you go to the MMU to translate

your virtual address to a physical address MMU will check the TLB. If the TLB is a hit if the

TLB check is a hit and you have this virtual to physical address mapping. Then you can directly

go to main memory using the physical address.

If it is a TLB miss, then you will have to first go to main memory so MMU checks the TLB. If

the address is there in TLB you directly have the physical address you go access your main

memory. If it is a TLB miss you will first go to main memory access the page table multiple

times to translate the address. And then, you have the physical address then you will once again

go to main memory to fetch the data.

Now TLB miss that is why it leads to extra memory accesses due to this page table walk and it is

especially a problem if you have a multi-level page table if you have a four level page table

MMU has to go to main memory four times to read the different parts of the page table before it

can get a physical address using which it will go to memory once again. So, to avoid this MMU

page table walk you need a good TLB hit rate.



So, the question comes how do you improve the TLB hit rate. Of course it is the same principle

if you work with a smaller set of pages at any point of time if you keep your working set size that

is the amount of code or data you are looping over small, then you will only have to keep track

of fewer address translations and with great likelihood it will be found in your TLB. So, once

again write your code in a way that there is some locality of reference and limit your working set

size that is one way to improve your TLB hit rate.

The other way is to use what are called huge pages. Now we have seen that the common page

size in operating systems today is 4 kilobytes. But, if you use a larger page size of a few

megabytes or a gigabyte if you use a big page, if you use a 4 mb page then what happens your

program will have fewer pages and you will have fewer page table entries you will have fewer

things to store in your TLB.

So, if you increase your page size, then your TLB hit rate will automatically improve. So this is

one way if possible use larger pages in your program to have fewer page table mappings. And

therefore, greater likelihood of storing all your page table mappings in the TLB. Of course this is

not for every program this is only if you have a large amount of data to store in those huge pages.

If your program itself is small then there is no point taking a 1 gb page. So again,, this is only

where it is applicable for certain applications.

So the other thing that will happen on a memory access is you know you try to access the page

table entry but the OS has not allocated physical memory yet for that page. In which case the

MMU will trap to the OS because it is not able to translate the virtual address and that will raise

a page fault. Now servicing a page fault once again will require multiple disk accesses because

the OS has to free up a free physical frame it has to write something to swap read something

from swap right we have seen this before that servicing a page fault is actually a very painful

process.

And therefore, if you have too many page faults in your system you have too many pages and too

few physical frames to store them in. Then if you access this page you get give it a frame, then

you access this page you take it away from this frame is taken away from here given to this guy,

it is like musical chairs the same small number of physical memory is going around to multiple

pages. If that happens, then your system is in a state that is called thrashing there are too many

page faults every access leads to a page fault and you are doing a lot of disk accesses.



So, to avoid thrashing once again the techniques are the same limit your working set size. As a

program try to ensure that you are using lesser amount of physical memory as far as possible do

not spread your data across many pages try to make it as compact as possible. And also clean up

unnecessary physical memory usage.

For example, if you have zombie processes you know the parent has folked a child but not yet

reaped it then these zombie processes are occupying a lot of physical memory unnecessarily. So,

there could be many such inefficiencies in your system where you are wasting memory so cut out

on all these unnecessary memory usages so that you have enough physical memory frames to

store your working set size.

If you do not do that you will end up with a lot of page faults. So, this is again one more thing to

keep in mind when we are talking about how to optimize memory access. So now, we have seen

memory access from CPU caches to the TLB MMU page faults and so on. Now here are a few

other general tips to improve your memory allocation and access in a program.

(Refer Slide Time: 17:50)

For example, if you have DRAM so main memory allows random access that is you can access

this byte then jump to some other byte then jump to some other white right you can randomly

jump across main memory there is no read reason to read it in sequence. But, when possible try

to access your main memory in a sequential manner.



Why is this, if this is your main memory and you are accessing it in a sequence then your CPU

can actually predict what memory you will access next and then it can pre-fetch it into cache.

That is if you are accessing memory with a certain what is called the stride length that is you

know you are accessing this byte, then 4 bytes 4 bytes 4 bytes or 8 bytes 8 bytes depending on if

you have a fixed stride length.

And you are accessing memory in a periodic manner then your CPU modern CPUs have this

thing called pre-fetchers where the CPU will try to predict after this address maybe it will access

program will access this address. Then this address, then this address let me predict this and get

them into CPU cache beforehand before the actual access happens so that the performance will

be better. So, in order to make your CPU pre-fetches work better sequential access is better.

If you are randomly jumping around your program here then here then here then here all over the

place and your pre-fetcher cannot predict anything it says i do not know what the process will do

next. But if there is a pattern then the pre-fetcher can exploit that pattern to improve your

performance. Therefore to the extent possible try to do a sequential access of memory for better

performance.

Similarly, the same logic holds for disks also especially for traditional hard disk where there is a

magnetic disk that is spinning so once the disk reaches a certain location the next few locations

can be accessed very quickly. Otherwise, if your disk has to you know do a random access all

over then it will be slower. Therefore, even for disk data the same logic holds to the extent

possible store your data sequentially and access it sequentially.

Then another thing to keep in mind is that dynamic memory allocation say via malloc or new

anytime you have to dynamically get a small chunk that is slow. Because we have seen malloc

there are multiple chunks of memory on your heap malloc has to check whenever you have to

allocate say 4 bytes it has to check where is a free chunk that I can give. So, this is in general a

slightly slow process dynamic allocation every time you want something instead of going and

getting it what you can do is you can pre pre-allocate memory.

Again where it makes sense in your program just allocate a large chunk say you mmap a large

chunk page from the OS, then this is better than every time just doing a small malloc and this can

be faster also. The other thing you can do is you can use custom memory allocators once again a



general purpose allocator like malloc that allocates any size you want is useful in small programs

but if you are building a large system then this might be very slow. So instead, if you know that

your program accesses memory in just fixed sizes or a few different set of fixed sizes then you

can use what are called slab allocators we have seen this before.

They organize your heap in a much more optimal fashion in fixed size chunks and it is easier to

find a fixed size chunk instead of going over all the variable size chunks. Therefore where it

makes sense use slab allocators in your program instead of using the general purpose malloc on

the heap.

Then store data in your own memory mapped anonymous pages instead of the heap if your data

has a fixed pattern and you know that this is how you are going to allocate it and deallocate it.

You might as well get a page from the OS and put your data in it instead of getting small chunks

from the heap every now and then.

So, these are all ways in which you can think about when you are doing memory allocation for

data structures in your program think about should I just whenever I want just do malloc or can I

pre-allocate can I use better memory allocators these are all decisions that you have to make in

large systems.

Then the other of course, a very simple common sensical tip to keep in mind is avoid copying

memory where possible try to avoid copying memory from one location to the other because this

takes time. And one way for example is memory mapping a file if you are reading a large file

from disk you copy it once from disk into disk buffer cache or some kernel memory.

And then you simply add a pointer to this page to this physical memory at a certain virtual

address space. So the process will access this physical frame which has the file data using these

virtual addresses. So this makes it easy you are not copying it once again into any other location.

On the other hand if you are using read write system calls it is first fetched into OS memory the

device will DMA it and then it is copied into a user buffer that is given as argument to read

system call.

So, where possible avoid these extra memory copies and even between two user buffers in your

program also you can try to avoid because memory copy takes time. And later on in the course

when we study performance engineering how to measure performance how to optimize



performance we will revisit all of this in some more detail. For example, which of these is

relevant for your program and which of these optimizations does not make sense for your

program. If any optimization just results in a one percent improvement it is probably not worth

doing but if some optimization leads to a 30 percent improvement in performance it is worth

doing.

So, how much impact do each of these things have on your program you have to profile your

code to understand. How to do all of these things, we will study later in the course in more detail.

But in this lecture itself since we have just studied memory access I would like to put out all of

these ideas in front of you so that you can think about it when you build computer systems.
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So, we will end this lecture by discussing a few common memory related bugs. So far, we have

seen how to write programs well so that you utilize your memory well and access memory faster.

Now here are some of the errors that you can make in your program when accessing memory

that you would want to avoid. So, what are some of the common bugs? One of the most common

bugs is what is called a memory leak, that is in programming languages in some languages you

have to explicitly allocate memory via malloc or new and you have to explicitly free it up using

free or delete.

For example, if you malloc some amount say you know 20 bytes malloc and you get a pointer.

Then later on once you are done using this memory you have to say free of this pointer. So, when



you do malloc some chunk of 20 bytes is allocated on the heap and that address is stored in this

pointer. Later on, you have to tell the heap free up this memory for me otherwise this memory

will stay allocated to you. And if you forget to free it up then this memory on the heap will be

wasted this will be like a hole on your heap.

So, the other bug is what is called dangling pointers that is you have allocated memory on the

heap you have stored it in a pointer and then you have also freed it up and then you try to access

that memory again. Now that memory might be given to somebody else or this area of the heap

might be freed up anything can happen. If you access such dangling pointers then you might get

a segmentation fault or you might be accessing some other memory incorrect behavior all sorts

of things can happen.

So, these are called dangling pointers after freeing up now after doing this you access that

pointer again. So, these are all issues because of programmer errors that is you are not keeping

track of what you have allocated on the heap properly. And but if you want to avoid these errors

all together there are actually mechanisms in programming languages today that help you keep

track of which memory has been allocated in the heap and when it can be freed up that is called

that technique is called reference counting.

Which is if there are pointers to some memory on the heap the heap itself will keep track okay

there are pointers here and once these pointers are no longer there to this memory the heap itself

will keep track of these references count these references when the count goes to 0 the memory

will be automatically garbage collected or deallocated. So, for example, if you use what are

called smart pointers like the shared pointer in C plus plus, then the memory will be

automatically deallocated once all the pointers are gone to that malloc chunk.

So, if you do not want to have these kind of memory leaks or dangling pointers in your program,

you might want to explore using these different kinds of pointers in your programing languages

like C plus plus. Then the other common bug is what is called buffer overflow that is you know

you have your stack, on your stack suppose you have an array of 64 bytes. And you have various

other things on your stack like return address other arguments local variable something.

And then, if you read a string longer than 64 bytes into this array, then what happens that string

will overwrite all the other elements on the stack as well. So, this is a common issue the



corruption of the stack because the stack has multiple data items stored one below the other and

if one of them overwrites then important information like the return address everything can be

lost right so this is called the buffer overflow. Attack and a lot of attacks on the internet actually

exploit this buffer overflow.

So, this is another common bug that you have to avoid so for example if you are reading a string

into a 64 byte buffer you have to check that the string size is 64 bytes you cannot simply just

write it to for however long it wants to. So, there are various other errors pertaining to memory

like this concept of pointers the fact that the pointer stores an address, what is a pointer,

understanding pointers correctly, initializing memory and if you do not do any of these things

there are many other errors that can happen with respect to memory access in a program.

And if you have taken a good introductory programming course a lot of these things should have

been explained clearly to you. So, that is all I have for today's lecture in this lecture we have

basically done a recap of what are all the steps in the memory access when the CPU tries to fetch

an instruction or data from a virtual address what are all the steps that happen and how to make

each of these steps go faster so that the performance of your application can improve.
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And we have also seen what are some of the common bugs around memory access and how they

can be avoided. So, as a small programming exercise you might want to explore things like smart

pointers if you are using languages like C plus plus explore these smart pointers and other such



reference counted mechanisms because they make it easier for you to avoid the common bugs

like memory leaks and dangling pointers in your code.

So, thank you all that is all I have for today's lecture we are going to start a brand new topic next

week onwards pertaining to the I/O subsystem of files and network and so on in the next week.

Thank you all.


