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Hello everyone, welcome to the twelfth lecture in the course design and engineering of computer

systems. In this lecture, we will continue our discussion of memory management and we will go

into more detail on the concept of paging that was introduced in the previous lecture. So, let us

get started.
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So, this is a recap of what we have seen in the previous lecture, every process has a virtual

address space. It is all the set of virtual addresses that the process can access and this is divided

into fixed size chunks called pages. And each page is assigned a memory frame in RAM by the

operating system, a free physical memory frame is assigned to every logical page to store its

contents in RAM. And this mapping of which page is stored at which location in RAM this is

remembered by the page table.

Now this virtual address space, we have seen that it not only has the process code data, stack,

heap, it also has some shared software like the C library or the operating system. So, shared

software that is used by multiple processes that is also part of the virtual address space of every

process. For example, the high virtual addresses that are not used by the user code are used by



the operating system. And the page table maps these high virtual addresses to the physical

location of the OS code in RAM.

And note that there is only one copy of the operating system in RAM. Another process also its

page table also will map these high virtual addresses to the same physical addresses in RAM. So,

with shared software, the same physical frame can appear in the virtual address space of multiple

processes by adding these mappings into the page tables of these processes.

And once this page table is created by the OS, the MMU a special piece of hardware called the

MMU uses this page table uses these mappings from virtual addresses to physical addresses to

translate virtual addresses. So, whenever the CPU requests code or data at some virtual address,

this translation is used by the MMU to get the physical address and the recent translations made

by the MMU are cached in the TLB.

So, if the address translation fails for some reason, for example, some virtual addresses are not in

use by the process, but still, the process accesses them in such cases, if the address translation

fails due to some error condition, then the MMU raises a trap and the CPU jumps to kernel mode

we have seen how these traps work and the operating system will solve this problem. So, this is a

recap of what we have seen in the previous lecture with respect to paging. So, now, let us

understand what is the structure of the page table.
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You can think of the page table as a large array of page table entries. If the process has n pages,

there will be n entries in this array and each page table entry will contain the physical frame

number, where that page is stored. So for example, the ith page in the process, if it is stored at

some physical frame number say x, then the ith page table entry will have this physical frame

number x stored in it, so the ith page table entry contains the frame number and some other

information of the ith page of the process. So, this is an array with one entry for every page of

the process.

So, we also indicated colloquially like a pointer because it contains the frame number. We also

show it as a pointer to that physical frame. So, in addition to this physical frame number in

addition to this pointer to physical memory, what does a page table entry contain? It has some

other information about the page like for example, is the page table entry valid or not? That is,

some virtual addresses may not be used by the process. In a 32-bit architecture, you have 4 GB

of virtual address space, you may not have 4 GB of code or data to store so some virtual

addresses you may not use.

So, such virtual addresses such pages are marked as invalid, the page table entry does not have

this valid bit set that means you will not store any frame number corresponding to that page

because that page is not in use. So, that is one piece of information that is stored in a page table

entry. Other things are like Read, Write permissions user kernel permissions. For example, if this

page if these virtual addresses are mapping to the physical location of the OS code, the high

virtual addresses on the page table map them to the physical locations of the OS Code, we have

seen this.

For such page table entries, which contain a pointer to OS code, you will set a permission bit

indicating that they should only be used in kernel mode and not in user mode. So, such

permissions are stored with every page table entry indicating how the page should be used. So, in

addition to these permission bits, there are also a few other status bits about every page that we

will study in the next lecture.

So now, you have this page table with one entry for every page, then how do you translate a

virtual address to a physical address using this page table? So, let us consider 32-bit architectures

and assume we have 4 KB pages, which is the standard today. So now, within a page, you have 4

kilo bytes. So, 4k is nothing but 2 to the 12.



So now, you have 2 to the 12 bytes in this page, so 12 bits in your virtual address will indicate

the offset within this page, so the last 12 bits will tell you which of these 2 to the 12 bytes in a

page are you referring to. And the remaining 20 bits will tell you the page number. So, how do

you translate an address using a page table, you will take a 32 bit address, and split it into a page

number and an offset.

And this page number, you will look up in the page table, you will go to whatever is the page

number, you will go to that entry, you will use this page number to index into the page table, find

the corresponding page table entry, read the frame number from it, and then replace the page

number with the frame number and along with the offset, because in that frame, also the same

offset will be used, the offset does not change. If the pages and frames are the same size

whatever is the offset here will be the offset here also. Use the same offset replace the page

number with the actual physical frame number and the combination of these two will give you

the physical address.

So, this is how you translate virtual addresses to physical addresses using this page table array.

So, now let us go into a little bit more detail of what is the size of this array and where is this

array stored in memory. We have said that this page table is part of the PCB of a process. So, it

must be somewhere in the OS, part of the memory. The OS has its own code and data structures.

The PCB is also one such data structure that the OS maintains and as part of that PCB, you can

store this page table also. But now let us see what is the size of this page table to think about the

feasibility of how it can be stored in memory.
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So, what is the typical size of a page table, if you have a 32 bit system, then you have 2 to the 32

that is 4 GB of virtual addresses available to every process. And if your page sizes 4 KB that is 2

to the 12 bytes, then the number of pages will be 2 to the 32 divided by 2 to the 12 that is 2 to the

20 almost a million pages you have in the virtual address space of every process.

A process may not use all these million pages all the time, but that many addresses are available

for every process. And so your page table is an array of 2 to the 20 entries, and all of these

entries have to be maintained whether the process is using the memory or not whether they are

valid or not. If the entry is not valid, you will not set the valid bit but all these 2 to the 20 entries

will be maintained in the page table of every process.

And if each entry is 4 bytes in size, then your entire page table size will be 2 to the 20 into 4 that

is 4 MB. So, you have 2 to the 20 entries each have 4 bytes. So, the total size of this page table of

processes 4 MB this is quite huge. If you have a small program, it still needs 4 MB of page table

memory to keep track of the program state. So, now the question comes up how do you store this

page table in memory such a large chunk.

Note that RAM is only allocated in page size chunks you only allocate 4 KB at a time. So, how

will you store this 4 MB of data. The way we do it is we will split this page table also into 4 KB

chunks, this page table also will be split into smaller pages and distributed throughout memory. It

is the same concept, there is the entire memory image of a process just like this memory image is



split into smaller chunks and stored at different locations in RAM. Similarly, the page table also

will be split into smaller chunks and stored at different locations at different frames in RAM.

That is the only way memory allocation can be done in paid sized chunks.

Now, if your page table is split into multiple such locations, then how do you tell the MMU

where is the page tables. You remember that we tell the MMU here is a pointer to the page table

using which it will translate. Now if you split your page table into so many chunks then which

chunk do you give the MMU.

So, what we do is we will use another page table we will use another outer page table to keep

track of the physical locations of these page table chunks and we will give the MMU a pointer to

this outer page table. So, we have to do this we cannot give the MMU pointer to like the zillion

chunks and say oh go read the page table from here. So, therefore, we will collect the physical

locations of all these page table chunks and put it in another table and give the MMU a pointer to

this table.
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So, this concept is called hierarchical paging and such page tables are called hierarchical page

tables. So, in the previous example, this 4 MB page table, we will split it into chunks of 4KB

each and how mean such chunks will be there, you will have 1k or 2 to the 10 such chunks. So,

your page table is split into so each of these chunks has page table entries has some page table

entries, and you will have 2 to the 10 such inner pages which have page table entries.



Now, these page table entries point to the physical frames of the process. And then you will have

an outer page table which has the physical frame numbers have all of these inner page table

chunks. And now this 2 to the 10 frame numbers of this inner page table each assuming it is 4

bytes again like a page table entry it will fit in 4 KB.

So, one page will be enough to store all of this information and this pointer to this outer page

table is what you will give the MMU. So, this is called a two level page table you have an outer

page table also called the page directory, what does this have, this has the physical frame

numbers of these 2 to the 10 inner page tables. And each of these inner page tables each has 2 to

the 10 frame numbers of the memory pages the physical frames of your process. So, this is your

actual page table array that is split and these individual chunks are kept track of in this outer page

table you have an outer page table and multiple inner page tables.

And now when the MMU is given a pointer to this outer page table or the page directory, and if

there is a TLB miss then the MMU has to look up this two level page table to translate a virtual

address to a physical address. That will that is it will first find out which of these inner page

tables to use, and then inside that it will find out the page table entry of the virtual address

lookup the physical frame and then translate. So, let us see how that is done, how address

translation is done.

(Refer Slide Time: 14:03)



So, you have 2 to the 10 inner page tables each of which has 2 to the 10 page table entries which

contain the physical frame numbers of the actual memory pages of a process where the process

code data stack heap everything is stored. And there is an outer page table which has 2 to the 10

physical frame numbers pointers to all of these inner page tables and the starting address of this

outer page table is given to the MMU. So then, your virtual address your 32-bit virtual address

you have split it into a 20 bit page number and a 12 bit offset.

Now this 20 bit page number you will once again split it into a 10 bit index into the page

directory and a 10 bit index into the inner page table. So, to locate your page in this array you

will first see which of these chunks of this array should I go to you will look at the most

significant the most significant 10 bits, you will see to find out which page table chunk should I

go to. Inside that page table chunk you will use the next 10 bits to index into one of these 2 to the

10 page table entries in the inner page table.

And now you have obtained your frame number then you will add the 12 bit offset and you will

get your physical address. So, this is called MMU is walking the page table. If your page table

has multiple pieces, then the MMU will first look up, read this page, find something in it, then go

to this page, find something in it and then it will get the physical address to access the actual

memory of your process. This process of traversing this hierarchical page table is called Walking

the page table.
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Now, you might ask if there are multiple such inner page tables and you know, you have put it in

one outer page table. What if it does not fit in one outer page directory? Then what do you do if

you have multiple such outer page directories then you will have to have another page table to

keep track of all these page directories. And you have to keep doing this until at some point all

the information fits in one page and that one page can be given to the MMU the address of that

one page can be given to the MMU. So, you can have more than two levels in the outer page

directory if required.

So, let us see an example. Suppose you have a 48 bit CPU that is your virtual address space is 2

to the 48 bytes in size. And you have 4 KB pages and 8 byte page table entries. So suppose this

is your situation, the previous 32 bit example was simpler. Now, we will see that this will get

more complex.

So, now what do you have, your process has 2 to the 48 bytes in its address space, divided by 4

KB, this is 2 to the 12 bytes. So, if you divide this, you will get 2 to the 36 pages are there,

possibly not every process will have 2 to the 36 pages, but a process can have up to 2 to the 36

pages. And therefore, you will have 2 to the 36 page table entries in the page table of the process.

Now, every page every 4 KB page can store 2 to the 9 page table entries 2 to the 12 divided by 8

that is it can store two to the nine page table entries. So how many, what is the size of the

innermost page table of a process, you have 2 to the 36 total page table entries divided by each

page can store 2 to the 9 page table entries.

So, you will need 2 to the 27 pages to store all the page table entries of the process in the

innermost level, you have 2 to the 27 pages in the innermost level of the page table of the

process. And these 2 to the 27 pages will contain the frame numbers of these 2 to the 36 pages of

the process. So, you have 2 to the 27 pages in your innermost level of the page table. Now these

2 to the 27 pages, their frame numbers have to be kept track off in a page directory.

And how many such pages do you need all these 2 to the 27 will not fit in one page anymore,

because a page can only hold 2 to the 9 page table entries. So therefore, you will have 2 to the 27

divided by 2 to the 9 which is 2 to the 18, you have 2 to the 18 pages in the next level have the

page table which contains pointers to this inner most page table.



Then in the next level, you have 2 to the 9 pages. And all of these frame numbers can fit in one

page and this page will be given to the MMU for address translation. So, you have an outer most

fourth level outer most page directory, this has 2 to the 9 frame numbers to 2 to the 9 pages.

These 2 to the 9 pages, each in turn has pointers to 2 to the 9 pages. So, you have 2 to the 18

pages. These 2 to the 18 pages contain pointers to these 2 to the 27 pages.

And this 2 to the 27 pages have the 2 to the 36 page table entries, the 2 to the 36 page table

entries required for this process. So, you have a 1, 2, 3, 4; 4 level page table. And how do you

translate a virtual address to a physical address you will first take the first topmost 9 bits index

into these 2 to the 9 find one of the entries go here next 9 bits next 9 bits next 9 bits by using this

36 bits. The first 36 bits you have located the final page table entry corresponding to this page,

then here you will find the actual frame number and you will translate the address.

So, now to translate one virtual address to physical address, the MMU has to perform 1, 2, 3, 4

extra memory accesses before it can obtain the physical address using which it can actually

access the memory contents. So, before every memory access, there are four extra memory

accesses if there is a TLB miss, which is why once you have multi level page tables, in you know

more than 32 bit CPUs, if you have a 64 bit CPU, you will have multiple levels of the page table

like this. In such cases, a TLB hit is even more important, otherwise, you are going to have many

more extra memory accesses. So, this is about multi-level page tables.

So, now let us take a step back we have understood how the operating system manages the

virtual address space of a process divides it into pages places them at different physical memory

frames and keeps track of this mapping in the page table. So, this is the view from the operating

system side. Now let us come out of the operating system and look at things from a user point of

view now you as a user you have written your program. So, from your point of view, what is

happening how is all this memory allocation happening.
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So, you have written a program you have compiled it into an executable, this executable contains

the code as well as the compile time data like global, static variables and so on. So, now this a

dot out that you have compiled is say on disk somewhere and when you run this program, the OS

creates a process. So, it will assign some memory frames in RAM, it will find some free physical

frames in RAM.

So, this is your physical memory, it will find these free physical frames, and it will copy the

content from the executable into these frames and some frames can also be just free pages for the

stack heap and so on. So, this physical memory will be allocated and then it builds your virtual

address space that is at these virtual addresses starting from 0, the code and data is mapped that

is you will have add a page table entry from this page to this frame, then you will have another

page table entry to the stack to the heap.

And also if your OS code is located somewhere you will add a page table entry from the OS

virtual addresses to the OS code in RAM. So, it will the OS will build the virtual address space

of a process. That is it will create a page table and add all of these page table entries. The frame

number which has the code and data will be stored in the first page table entry the frame number

that has the stack will be stored in some page table entry.

The frame number that has the OS code and data will be stored in some page table entry

corresponding to the OS virtual addresses. In this way, this page table is constructed by the



operating system and by constructing this page table the operating system has constructed your

virtual address space it has constructed what are the virtual addresses and what is the program's

view of the memory the OS has constructed. It is giving this illusion that this is the memory you

have by means of this page table.

And then this page table’s pointer is given to the MMU when the processes context switched in,

so the OS creates a page table during say the fork system call when the process is created the

page table is created, but the MMU is told about it only when the process runs when it is context

switched in.

And then when the process is running the CPU will access some virtual address program counter

will say is pointing to this code over here the CPU will try to fetch this instruction and then the

page table will be used to translate it into this physical address and the actual memory will be

accessed. So, this is how the OS creates a process and you as a user will have this view of the

virtual address space you will see code data being placed at these different virtual addresses and

so on.

And, whenever you look at your virtual address space, you will see that it has some gaps, not all

virtual addresses will be in use for example, the OS might allocate say virtual addresses 0 to

some number x for you know the code plus the compile time data. Then from x to y it can

allocate for the heap and then it can leave some addresses free and then allocate the stack over

here. These virtual addresses will not be assigned to anything there will be such gaps in your

virtual address space. And if you access this virtual address, it will throw a trap.

So, in the page table, these entries for these pages that correspond to these virtual addresses will

be invalid. Now, why does the OS do that? Why cannot you just put everything one after the

other because you want the heap may expand the stack may expand? So, you want to leave gaps

to allow for expansion for example, if your heap needs more memory, it will start to use these

new virtual addresses that is why you will have gaps in your virtual address space.
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And a little bit more detail on the heap. So, the heap is basically one or more pages of memory

that your C library or some language library the heaps are managed by the language library in C

language, it will be the C language library and so on. So, these language libraries will get one or

more pages from the OS and they will allocate smaller chunks to user programs. If you as a in

your user program if you say MALLOC, you want say 8 bytes, then a small 8 by chunk will be

allocated on this heap memory and return to you.

So, MALLOC will basically return the starting address starting virtual address of this freeze

chunk. And inside this heap will have you know some chunks are unused or unused by the

process some chunks the process has freed up whenever you do MALLOC later on you will do

free to free up that memory.

So, this heap manager the process the code that manages the heap will split this pages into

smaller size chunks and will allocate it to the user and it will keep track of all of these free

chunks. So, suppose you have allocated this chunk and then it has been freed up then later on

when somebody else requests it, it may give this chunk. So, this free chunks if you have a bigger

free chunk it can be split and a smaller one can be allocated or if you have two adjust and free

chunks they can both be merged and this bigger free chunk can be returned to the program.

So, you will manage these free chunks using some suitable algorithms and these smaller chunks

will be returned to the user program when you call functions like MALLOC. So, this MALLOC



the memory that MALLOC is returning is actually obtained in page size chunks from the OS

why because always will only give you page size chunks it will not give you 8 bytes and these

pages are split into the smaller chunks and given out by the heap manager program.

And some heap managers some language libraries automatically clean up if you have done

MALLOC and you are not using this memory anymore, they will automatically clean it up

seeing that there are no pointers to this memory anymore that is called you can you know

reference count the pointers to this chunk and free them up that is called automatic garbage

collection. Whereas, in some languages like C you have to explicitly free up if you do MALLOC

you get a pointer, then you have to call free on this pointer to free up this chunk.

And some heap managers who can also you know return back memory to shrink the heap. And if

you are heap is out of memory you have allocated smaller chunks to the program and all your

pages are full, then you can also request for more memory from the operating system. You can

request for more memory you can give back existing memory.

So, the heap deals with the OS and page size chunks in this way and the user program deals with

the heap using functions like MALLOC to get smaller chunks. So now, how does you know the

C language library the heap manager program if it wants more memory from the OS, how does it

ask for more memory.
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So, there are a few system calls for that. So, one system call is called the break or the

SBRK/BRK or SBRK system call which is it allocates memory from the program break that is

your code plus compile time data is there in your virtual address space say up to some address x

then the BRK/SBRK system calls are used to allocate additional memory at from this point

onwards after the code plus data section. This point this virtual address is called the program

break. And from this point onwards, if you want to allocate some pages of memory you use the

system calls.

On the other hand, there is another system called mmap that can be used to allocate memory at

any virtual address. So, in your virtual address space you have the Code Data some virtual

addresses are in use. And some other virtual addresses, say here is the stack, then any free virtual

address range that is not in use yet, you can say, allocate a physical frame for me and map it to

this page number, you can use the mmap system called to do that you can get a page size chunk

at any free virtual address that is not yet already in use.

So, the BRK/SBRK system calls allocate memory at specific virtual addresses after the program

break the mmap system call allocates memory at any unallocated virtual address, there will be

many such gaps in your virtual address space. But either of these, you cannot ask the OS for 4

bytes 8 bytes, it will only give you 4 KB or whatever is the page size on your system only that

size chunks you will get.

So, this mmap system call is very powerful it is it stands for memory mapping, it takes as an

argument the size of the memory that is required, it should be some multiple of page size, and it

will return when you do mmap you will get the starting virtual address of this chunk. And

internally, the OS has allocated a free frame and added a page table mapping from this frame

number to this page number in your page table so that when you access this virtual address you

are actually accessing this physical memory allocated to.

So, the heap can also for example, do a map get chunks like this, and then split this into smaller

chunks and give it to the user program. So, this is one way of expanding your heap. Now, this

general purpose MALLOC, the heap manager that you have by default usually has some

performance overheads.
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Why because, there are you know these variable size chunks that are all maintained and say

some link list or something, there is a big chunk, there is a small chunk, there is a list of free

chunks, whenever you want some memory allocation you will go through this list you will find

something oh this is too small for me, this is too big for me.

So, allocating memory from these list of free chunks, you know this variable sized allocation

usually is a little bit more of a headache, it has some higher overhead. So therefore, what some

heaps do is they will allocate memory in fixed size chunks. So, such heap managers are called

slab allocators, they will divide your heap into you know like a grid into fixed size chunks and

they will give you a standard size every time.

So, this is not for every program. If your application has this characteristic that it only allocates

memory in certain fixed sizes. If your application logic is such that you will only allocate

memory in either 8-byte chunks or 16-byte chunks or something like that, if you know this a

priori, then you can use an optimized memory allocation algorithm in your heap called a slab

allocator.

Where you divide it into fixed size chunks and you will allocate these fixed sized chunks. So,

this is in general faster if you do MALLOC like this with a slab allocator it will only give you

fixed sizes, you don't have flexibility, but it will return faster you don't have to traverse like some

variable sized chunks and all of that.



So, this is one optimization you can use in your programs if your application has this property.

And the other thing that you can do is if you want faster memory allocation, you can directly

bypass the heap altogether and directly use mmap to obtain memory in your program you can say

okay, there is some heap stack whatever, but I want to store large amounts of data.

So, I will directly obtain in my virtual address space somewhere I will you know mmap some

memory and in this memory, I will put my own data and you can optimize your data storage by

memory mapping yourself and getting memory directly from the operating system. So, this is for

advanced applications that have to store a large amount of data. So, that is all I have for this

lecture.
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In this lecture, we have gone into more detail about the page table structure and hierarchical

paging. And we have also seen what are the system calls involved for memory management how

the user program or other libraries like the heap manager can get extra memory from the OS

using system calls like mmap and SBRK. So, an exercise for you is understand this concept of

multi-level page tables, you can try to calculate how many levels are there in the page table for

different architectures for different page sizes and so on.

And a small programming exercises you know, try to write a simple program using the mmap

system called the mmap system call is very powerful and very useful in real systems. So, try to

write a program that allocates a chunk of memory you can put some data in that memory region



you have allocated and play around with it. So, thank you all that is all for this lecture. We will

continue this topic of memory management in the next lecture. Thanks.


