
Design and Engineering of Computer Systems
Professor. Mythili Vutukuru

Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture 11
Memory Management in OS

Hello everyone, welcome to the eleventh lecture in the course Design and Engineering of

Computer Systems. In the last week, we have studied process management in operating systems,

we have seen how the operating system runs user programs on the underlying hardware. And we

have also seen how programs can be run inside virtual machines or containers. Starting this

lecture onwards in the next few lectures, we are going to understand memory management and

operating systems.

(Refer Slide Time: 00:43)

So, this slide has a recap of what we have already studied in the previous lecture where we

introduced operating systems. So, we have seen that whenever you as a user write a program this

is compiled into an executable, this executable has the code as well as some data that can be

allocated at compile time.

And whenever this program has to be run, the operating system creates a process and creates a

memory image of this process in RAM. So, in the main memory, in RAM, you will have the

memory image of the process. So, this memory image of the process has code data and this is

there in the executable the compile time data and the operating system also creates a stack, a



heap and other components in the memory image. And all of this memory is allocated in RAM

so that the process can run on the CPU.

Now, one thing to note that we have already discussed before is that all of these instructions and

data are assigned addresses. Now, what addresses do you assign? The compiler assigns addresses

starting from 0 to the code and compile time data, then whatever is the last address from there for

the other components like stack and heap also, the OS assigns addresses.

So every instruction, every variable in your memory image has an address and these are called

virtual addresses. Why because these do not actually correspond to real memory addresses in

RAM, they are just addresses we assigned for convenience. But in reality, this memory image

might be placed at some other location in RAM and that location the operating system knows

these actual locations, why because the operating system is allocating memory for this program.

And therefore, it knows those actual memory addresses of these instructions and data.

And this information is maintained in a data structure called the page table. So whenever the

CPU is executing an instruction, say the program counter has some address of some instruction,

and it tries to fetch this instruction, various registers try to access the data in a program. All of

these accesses, the CPU accesses the memory using virtual addresses, but they have to be

actually translated into physical addresses for the memory hardware to actually return the data.

So, how is all of this done? What are virtual addresses? What are physical addresses? How are

they translated all of this we are going to understand in more detail in this lecture.



(Refer Slide Time: 03:22)

So, let us first understand the term virtual address space. So, the virtual address space of a

process is the set of all virtual addresses available to a process. So, every process can allocate

virtual addresses starting from 0 to some maximum value to whatever instructions and data it

wants to use, starting from 0 to this maximum value is basically dictated by your CPU.

If your program counter in your CPU is 32 bits, if your architecture is 32 bits, then you can store

a maximum address of 2 to the 32 which is 4 gigabytes, this is the maximum address you can

store in your program counter. Therefore, this is the maximum address space that you can have.

So, this is the virtual address space of a process which contains all the code and data that the

process can access.

But, there is also what is called the physical address space of a machine. These are the actual

physical memory addresses that the RAM has. And these two are not the same thing, for

example, if a process has a virtual address, some code at virtual address 0, it does not mean that

this is that RAM address 0, in RAM, it could be at some other physical address.

So then, you might ask why do we need these virtual addresses? Why are we using these two

different addresses? Is not it confusing? The reason we need virtual addresses is that you cannot

assign physical addresses to code and data at compile time because it is not known. When the

compiler is generating the code and the data in the executable, it stops assigning addresses from



0 because it does not know where in RAM will this code and data be placed where will this

process reside in RAM that is not known.

So, therefore, it is convenient to use virtual addresses. And there are also other reasons, for

example, all the memory of a process may not be allocated contiguously in RAM a small part

might be here a small part might be there you do not want the user to know all those details about

the physical addresses. And this also, this virtual address space also gives you some kind of

isolation you can control what are the addresses what are the code and data that a process sees?

we will understand in more detail how isolation is done, we will see that later in this lecture.

But anyway, the summary is that everything that the program sees whatever addresses you store

in pointer variables, whenever the CPU requests a piece of data or an instruction from an

address, whatever addresses are stored in CPU registers, all of these are always virtual addresses

and all of these virtual addresses that a process sees and stores code and data at that is called the

virtual address space. But in reality, the memory hardware the RAM can only access data using

physical addresses. So, this translation is needed.

(Refer Slide Time: 06:22)

So, now, the question comes up, how do we translate these virtual addresses into physical

addresses and who can do this translation? So, the operating system knows where a processor is

located in RAM it knows the physical addresses, so, the operating system has all the translation

information. And this translation information that the OS has can be used for address translation.



So, let us understand how this translation happens using a very simple example. And of course,

how you do the translation actually also depends on how you allocate memory, there are different

ways of allocating memory that will result in different address translation logic.

So, the simplest way of memory allocation is what is called the base and bound that is, if a

process has say virtual addresses from 0 to n, it has a memory image of size n, then what the OS

will do is in RAM at starting at some location B at some base value B to B plus N, it will simply

store the memory image of the process. This is called a base and bound method; this is the base

and this is the bound that is, you will place the entire memory image contiguously starting at

some memory address B.

If this is your memory allocation logic, then how will you translate a virtual address to a physical

address if the CPU requests anything at some virtual address x, then this address x simply maps

to address x plus B, you simply add the base and you will map to address x plus B in RAM

virtual address x is translated into physical address x plus b it is simple this address translation

logic is simple.

And one more thing we have to check this if the process requests some address beyond n, then

we should not translate it to a physical address you simply cannot keep adding B everywhere you

have to check the bound also because a process can only access its memory image. So, the upper

bound also will have to be checked. So, this is the address translation logic. So, who does this

address translation logic? We have a special piece of hardware on the computer called the

memory management unit that does this translation on every memory access.

That is, whenever the CPU requests instruction or data at address x, the MMU will translate it

into address B plus x and then the RAM can fetch the data at address B plus x. And this

information of what is the base what is the bound that is provided to the MMU by the operating

system, but the actual translation is done by the MMU. In this way, the functionality is split

between the OS and the MMU.



(Refer Slide Time: 09:16)

So, to summarize, the operating system allocates memory and builds the translation information

whatever information is needed the base bound that is provided by the operating system, but the

operating system does not do the actual address translation. Why? Because the operating system

is not running all the time. We have seen in a previous lecture that once the CPU starts running a

user process just the user code is running on the CPU.

The OS is not in the picture only when a trap happens then the OS comes into the picture. So,

therefore, the OS itself does not do the translation cannot do the translation on every memory

access. Instead, this translation is done by the MMU using the information using the translation

information provided by the operating system.

So, whenever a processes context which then this translation information corresponding to that

process is provided by the OS to the MMU, and then the OS of the picture until a trap occurs,

and whenever the CPU is running the process, fetching instructions fetching data all of that is

happening with the address translation being done by the MMU. And these virtual addresses are

translated by the MMU and the RAM is then accessed using the physical addresses.

So, the CPU gives a virtual address, the MMU translates it into a physical address and then the

actual RAM is accessed using the physical address. And if the MMU runs into any issues, for

example, the process has accessed an address beyond its bound in such cases, the MMU will

raise a trap and you will go back to the operating system.



So, the role of the operating system is to provide this translation information to the MMU and

update this information on every context which whenever it needs to be updated, this information

is updated. So, the OS will talk to the MMU and provide this information and the MMU will

come back to the OS in case of any problem, but otherwise, the translation is handled by the

MMU.

(Refer Slide Time: 11:27)

So, another memory management technique so, we have seen a simple base and bound; a slightly

more complicated system is what is called segmentation. You can think of this as a generalized

version of base and bound that is instead of placing the entire memory image as one contiguous

entity in RAM, what we will do is we will split this memory image into code, data, heaps,

stacked into different segments and each segment will be placed in a different location in RAM.

For example, this code segment could be placed here and you know say the stack segment could

be placed somewhere else. So, each segment is placed separately at a different base. So, this

could be the base of the code segment, this could be the base of the stack segment and so on,

every segment is placed separately in RAM, and each will have a different base and a different

bound.

Why do we do this, it gives us more flexibility and instead of placing this big chunk of memory

image in memory, we will place it in smaller chunks might make it easier to find free locations

and so on. So, every segment has its own separate base and bound, then a virtual address is



basically which segment you are in and what offset into the segment you are. So, you have how

do you translate this to a physical address you will add the base address of that segment to the

offset, the base address plus the offset will give you the physical address.

So, if you are using segmentation, if the OS is allocating memory to a process using the

segmentation logic, it will give multiple of these base and bound values to the MMU for

translation. And the MMU will see when the CPU requests a certain virtual address it will see

which segment what is the offset at the corresponding base and return the physical address.

Now, the MMU also if you access beyond the bounds of a segment, if you access some data

beyond whatever is your limit, then it will throw a fault which is why those errors are called

segmentation faults. Even though segmentation is not widely used today, there still is called a

segmentation fault.

So if you access an array out of bounds, you will get a segmentation fault why because, you have

gone beyond the limit of your segment. And when such faults occur, it will trap to the OS and the

OS will handle the error. And it may also terminate the process. If you are accessing memory

that you should not be accessing you can be terminated.

(Refer Slide Time: 14:09)

So next, the way of managing memory is what is called Paging. So all of these things like

segmentation and base and bounds are all simple ideas, but modern systems predominantly use

paging. That is what is paging, you will divide your virtual address space into fixed size pages.



So, you are no longer dividing at the boundary of code, data, stack, heap, for example, your code

could be only half a page, your stack could be two pages does not matter. You are dividing it into

fixed size chunks called pages. And each of these pages is allocated a physical frame in memory,

a fixed size physical frame in memory.

So, virtual address space consists of pages and each page is assigned a free physical memory

frame in RAM. So, what is the advantage of doing memory allocation at this fixed granularity of

pages? So, typical page sizes say 4 Kb what is the advantage, the advantage is that you do not

have external fragmentation that is your memory just has you know fixed size chunks like this

there is a page here a page here a page here, you do not have any gaps between pages.

If you did variable sized allocation, then what would happen, you have a chunk allocated like

this then another chunk allocated like this then you might have a gap here another chunk you will

have these small holes left in between it will become very messy. So, if you do not want to do

that, then you will do a fixed size memory allocation.

But, the problem with this fixed size memory allocation is that there could be internal

fragmentation that is inside a page some space could be wasted. For example, if your pages 4 Kb

or processes only using 2 Kb the other 2 Kb is free that is the price you have to pay for doing

fixed size allocation. Now with paging, the OS maintains a data structure called a page table.

So, if you look at the virtual address space of a process it is divided into pages and if page 0 is

placed at some physical frame number say 42 in memory, page 1 is placed that another physical

frame, page 2 is placed at another physical frame. So, all of these numbers page 0 is placed that

some frame, page 1 is placed at some frame, page 2 is placed at some physical frame all of this

information is stored in the page table of a process.

There is one such page table for every process and this is part of the PCB of the process and it is

maintained by the operating system for every process. And this page table is provided to the

MMU whenever a processes context is switched in so that the MMU can use this page table in

order to do address translation. So, this location of the page table is known to the MMU and

MMU will use it, it is in fact written into a special CPU register and this is used by the MMU for

address translation.



(Refer Slide Time: 17:24)

So, how does address translation happen with paging? If you look at you know, any page and

inside a page there is some data at certain offset within the page. So, then your address this

address x of this piece of data will actually you can split it into two parts, you can split it into a

page number and the offset within the page. So, you will get some page number and then you

will get some offset within the page. So, this is your virtual address.

So, how do you translate it into a physical address? You will take this page number, you will

look up the page table find out which frame which memory location is this located at and then

you will add the offset. Once you get the frame number, you know the frame number, then you

add the offset and you have gotten your physical address that is how address translation is done

by the MMU.

For example, if you have 4 Kb pages on a 32 bit CPU in your 32 bit address for a 4 Kb page,

how many bits are needed to specify the offset, you will need logarithm of 4 Kb, those many

bits you will need to specify the offset. Therefore, in this 32 bits, the last 12 bits will be the offset

within a page why is that because 2 to the 12 is equal to 4 Kb.

Therefore, with 12 bits you can specify any offset within a 4 Kb page and the remaining 20 bits

will be your page number. So, whenever the MMU gets a 32 bit virtual address, it will split it

into two parts. Take this 20 bit page number, look it up in the page table, find the physical frame



number and then add the physical frame number and the offset concatenate them to get the

physical address. This is how address translation is done by the MMU.

But, there is an overhead involved here before doing every memory access, so the CPU wants to

do a memory access it has provided a virtual address to the MMU. And before the MMU can

actually provide a physical address and access RAM, it must first go to memory, get the page

table read it do this translation and only then we can access memory, before doing a memory

access. You have an extra memory access to do to access the page table, that is an extra overhead

you are somehow doubling the amount of memory accesses you have to do which is not ideal.

So, how does the MMU avoid this extra memory access?

(Refer Slide Time: 20:05)

What it will do is it uses a cache again, this is a principle that we have seen, often, it uses a cache

of these address translations. Every time a virtual address is translated to a physical address.

What the MMU will do is it will remember this translation, it will remember the page number to

frame number mapping in a cache is known as the TLB or translation lookaside buffer.

So, this is like any other cache, you will use the least recently used policy to evict entries if the

cache is full. Of course, you cannot store these translations for every possible page, you can only

store the most recently used translations, and the older ones you will keep evicting them just like

any other cache. But this TLB basically helps you do this address translation faster.



Every time the MMU wants to translate an address, it will first check the TLB. If the translation

is there, you can directly access the memory content without first going to memory to get the

page table. So, note that this TLB is not like the CPU cache. The main difference is that TLB

only caches the address translation, not the actual memory content that is there at that address.

So, if your CPU wants to give a virtual address and ask, ask the MMU to translate this virtual

address, then the MMU still has to go to RAM to fetch the data, just that with the TLB, you will

directly know the physical address to go to RAM. You do not have to first go to ram read the

page table and then go to ram again, to fetch the data, you are avoiding that extra page table

access.

But, the TLB does not store the actual memory content itself, you still have to go to RAM, it

only provides you with the physical address. So in this way, it is slightly different from a CPU

cache. So if there is a TLB hit physical address is ready, you can just do one memory access and

get the data you want. If there is a TLB miss, you have to do extra memory accesses for the page

table. So which is why the TLB is important.

And the TLB entries, all of these mappings also have to be cleaned up and have to be flushed

every time there is a context switch because of the new process, new mappings. So, you have to

keep these up to date with whichever processes running on the CPU. So now, we have all the

pieces together to understand what happens on a memory access.

(Refer Slide Time: 22:38)



The CPU has requested some data using a virtual address. The first thing that is checked is you

will check the CPU caches. If this address is present in the cache, then you have your memory

content you have your instruction or data whatever you want, and immediately the CPU can start

executing the instruction or processing the data you do not have to do anything else if it is a

cache hit.

But if it is a cache miss, then you will go to the MMU and then what the MMU will then do is it

will check with the TLB this virtual address to physical address mapping do you have it. If the

TLB has it, if it is a TLB hit, then you will directly go to RAM and you will fetch the data at a

physical address because the physical address is known to you.

If it is a TLB miss, then the MMU will first go to RAM access the page table translates the

address maybe store a copy of it in the TLB for the future and then it will go to memory again to

get the memory contents at that physical address. So, there are multiple memory accesses first to

access the page table for address translation information and then actually address access the

RAM at that particular address. And then, the contents of this memory will be returned back to

the CPU, CPU can store it in the cache for future accesses.

So, in this way, there are many steps involved in memory access, and at each point, there is an

extra overhead. If there is a cache miss, then it takes a long time if there is a TLB miss, it takes

some extra effort to translate the address. Therefore, having high cache hit rates and high TLB

hit rates, these are important for good performance in your system.

So later on when we are studying how to optimize performance. In that module of this course,

we are going to revisit these things and see how we can ensure high cache hit rates and high TLB

hit rates. So, the one small thing that I want to tell you before we end this lecture is let us

understand this virtual address space a little bit better.



(Refer Slide Time: 24:56)

What all should a process have in its virtual address space. Of course, all the user space code and

data in your program stack, heap everything you should have in addition to this, whatever other

common memory that does not belong to the process, but which the process will access all of

these are also assigned virtual addresses in the virtual address space of a process. Things like the

shared language libraries, operating systems, all of these.

So, libraries, OS any common memory that does not belong to this process itself, but will be

used by the process, these are all mapped into the virtual address space of a process that is the

page table will have entries. For example, the page table will have entries mapping certain virtual

addresses assigned to the OS to the actual OS code in RAM. So, some virtual addresses the high

virtual addresses that the program does not use for its code or data, those high virtual addresses

are assigned to operating system code and data and the page table of a process will translate

these to the actual operating system code located in RAM.

Note that these mappings are present in the page table of every process. That is every process

will assign virtual addresses to OS code and data but there is only one copy in RAM. So, a

different process virtual address space also, the addresses assigned to the operating system will

point to the same physical location of the operating system code.

That is, the operating system is mapped into the virtual address space of every process. There are

page table entries, which map certain addresses assigned to OS code and data to the actual



physical memory of the OS code and data. So why are we doing this, we are doing this because it

is easy to jump to the OS code during a trap.

If along with your program Code, Data, you see the operating system, program code and data

also add virtual addresses, then you can simply easily jump to them you can use the same page

table and jump to OS code jumped to library code everything, of course, there will be permission

checks and all of that, but it makes it easy to access all the other data that is not part of your

program also.

Therefore, if you look at the virtual address space of a process, not just the code and data of that

process, but a few other things that the process needs, they will also be assigned virtual addresses

and the page table will map them to actual locations where these things are located in memory.

And these can be common ones, it is not like every process will have a separate library these can

be common physical memory, that is whose address is present in the page table of every process.

(Refer Slide Time: 27:49)

Then the question might come up with the process can access OS code and data how are we

protecting from illegal access? Can the user go and change the OS code and data. Well, here is

where the page table has permissions. So, page table for every page you will store a permission

saying you know can you read is it only a read only page or can you also write to it is it user

page is it kernel page all of these permissions will be stored so that a user program only when it



is in kernel mode, when it jumps into kernel mode after a trap instruction only then it can access

this OS code and data otherwise it can only access it user code and data.

So, you cannot just randomly jump to the high virtual addresses of the OS code, the OS code

even though it is located at certain virtual addresses in your page table, you cannot access it

unless there is a trap. So, these permission checks are also done by the MMU. Whenever you

request if you say you want to request some OS code or data at a high virtual address and you are

in user mode, the MMU will consider this as illegal access and it will track to the operating

system. All of these permission checks like, is the page read only, can you read and write to it all

of these are also checked by the MMU.

(Refer Slide Time: 29:12)

So, that is all we have for today's lecture. In this lecture, we have studied how the operating

system allocates memory for processes and manages the address translation along with the

MMU. We have seen concepts like segmentation and paging. And we also understood that the

virtual address space of a process not just has the code and data of the process, but also other

common pieces of software like shared libraries or operating systems that the process will need

to access from time to time. These are all part of the address space of a process.

So now, you can try to understand this concept of virtual addresses and virtual address spaces in

your system. In Linux machines for example, you can look up files under slash proc in this proc

file system directory you can see what are the virtual addresses assigned to a processes code,



stack, heap to various libraries all of these this information you can see to understand this

concept better. So that is all I have for this lecture. In the next lecture, we want to understand

paging and a little bit more detail. Thank you all.


