
Design and Engineering of Computer Systems
Professor Mythilli Vutukuru

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Lecture 09
CPU Scheduling Policies

Hello everyone, welcome to the 9th lecture in the course design and engineering of computer

systems. In this lecture, we are going to study a little bit more about the CPU scheduler and what

are scheduling policies. Let us get started.

(Refer Slide Time: 00:32)

So, we have seen this concept of the OS scheduler before. So, the scheduler decides which

processes to run on a given CPU core. So, every CPU core can run one process at a time, but

there could be multiple processes that are ready to run and from among these multiple processes,

the CPU scheduler picks one of the process to run on a CPU core at a given point of time and

after some time, it might run P1 for some time and then it might context switch to P2 and so on.

It can run these processes one after the other in some order. So, the scheduler schedules not just

processes but also kernel level threads, we have studied threading in the previous lecture and

these threads are also scheduled independently like processes by the OS scheduler. So, there are

2 parts to the scheduler, one is the policy which decides there are all of these ready processes to

run which one should I run next on a given CPU core, that is the policy.



And once the policy decision is made, then you have the actual mechanism of the context switch

itself, which is if I decide to stop running P1 and run process P2 next, then the context switch

itself which is saving the context of P1 in its PCB restoring the context of P2 from its PCB, this

mechanism itself we have seen it before.

In this lecture, what we are going to study is the policy that is the decision of which process to

run. And there are many simple scheduling policies, we will start with studying some very

simple scheduling policies that are easy to understand, that have good theoretical properties and

so on. But if you look at what are the schedulers that are there in real operating systems, they are

actually quite complex, they are not the simple scheduling policies we will study in this lecture.

So, in this lecture, I will start with the simple policies, but I will also try to give you a flavour for

what are the real life schedulers looking like and what are some of these complex policies. But of

course, understanding a full fledged real life scheduler is beyond the scope of this course.

(Refer Slide Time: 02:42)

So, let us get started with the simple policies and before we go to the policies, let us understand

the types of schedulers. A scheduler is of 2 types, it can either be a pre-emptive scheduler or a

non-pre-emptive scheduler. So, what are these differences? So, understand that the OS scheduler,

when is it invoked for a context switch, there are different ways in which the OS scheduler can

be invoked.



So, first of all, for the scheduler to run the process has to be in kernel mode and once a processes

in kernel mode for a trap, the non-pre-emptive kind of schedulers what they do is, they only

perform what are called voluntary context switches. That is, if a process P1 has come into kernel

mode, it has trapped into the kernel and if it has made a blocking system call or it has terminated

for some reason, then P1 cannot run any more.

Only in that case will a context switch be done to another process and you will return back to the

user mode of another process P2. If P1 is able to run as long as P1 is able to run you will run P1

1 only when P1 does not want to run, if it makes a voluntary context switch only then the

scheduler will switch to another process.

So, such schedulers are called non-pre-emptive scheduler, non-pre-emptive means, it will not

kind of interrupt a process that wants to run. Other kinds of schedulers are pre-emptive

schedulers, that is they also perform involuntary context switches that is even if this process is

not blocked, has not terminated, can still continue to run for some more time, even then, some

schedulers will stop this process into a context switch to another process. Such schedulers are

called pre-emptive schedulers.

And such context switches are called involuntary context switches because a process has no

control over it, it is still running. It is in the middle of doing something but it can still be context

switched out. And these are needed modern operating systems do these involuntary context

switches because you do not want any process to run for too long on the CPU and starve other

processes, deprive other processes of their runtime.

You do not want any process to take over hog the CPU for too long. Therefore, most modern

operating systems use these kinds of pre-emptive schedulers and a lot of involuntary context

switches are also performed. So, now the question might come up, how is a context switch event

triggered? Why will a trap happen? If this process P1 is not making any system blocking system

calls, is not terminating, is not giving up the CPU, then how will the process go into kernel mode

to trigger this context switch.

For that purpose, modern CPUs have what are called timers, special piece of hardware that

generates interrupts periodically. So, these timer interrupts go off periodically and every so often



a process will trap into the operating system. This will ensure that the operating system can set a

timer on a process trapped to it and do an involuntary context switch.

So, timer interrupts are critical for pre-emptive schedulers. And most modern systems use

pre-emptive schedulers because you want to share the CPU across multiple processes. You do

not want any one process to run for too long. And because of this reason, because of the use of

pre-emptive schedulers, process can be context switched out any time, these unfortunate context

switches that lead to race conditions that we have seen in the previous lecture. These can happen

with modern CPU schedulers.

(Refer Slide Time: 06:33)

So, what are the goals of a scheduling policy? Before we study various policies, what do we

want to good policy to do? We want a good policy to effectively use the CPU. A scheduling

policy should not leave the CPU idle when there are processes to run that is inefficient. We want

high CPU utilisation, we want processes to complete as fast as possible. We want to minimise the

completion time of a process that is from the time a process is created to the time it ends.

We want this to be as fast as possible for as many processes as possible. We also want to

minimise response time of a process. So, note that response time is different from completion

time, what is the response time? The time from the process creation to the first time it is executed



on the CPU. So, when a process is created, when it is forked by the parent, it is added to some

list of processes and at a later point of time, the CPU will run it.

So, this is the response time. This indicates for example, if you click on a programme, if you do

some action, when will the action start to show up on the screen for you, that is the response

time. So, even if you do not fully finish the process, if you at least schedule it once, give it some

time to run, then the process will be responsive. This is very important for interactive processes.

If you are playing a computer game, you click on something you want the process to run and

handle the event run the code corresponding to your click. Otherwise, you are going to see a lag

when you interact with the process. So, response time is the time until you get the CPU for a

short time, for the first time, that is response time completion time is for the entire process to

complete these are two different things.

The other properties we want are fairness, if there are multiple processes in the system, you want

all of them to get some fair share of the CPU. You can also prioritise, you can also set priorities

for processes saying I want this process to get twice as much CPU as some other process that

also you can do. But whatever it is, you should be able to control how much time each process

gets on the CPU.

And finally, whatever is the scheduling policy, it should have low overhead, that is it should not

take too long to decide if you have a large number of processes the scheduler itself should not

run for a very long time trying to make this decision of which process to run next. It should

quickly make the decision and it should not cause too many context switches because a context

switch, you know saving context, restoring context, all of this itself takes time it can take up to

like 1 microsecond, it can take like a few 1000 of CPU cycles.

And therefore, you do not want to have too many context switches. You do not want a scheduling

policy that runs 1 process for a short time context switch, context switch, you do not want that.

You want your overall scheduling policy to not add much overhead to the system.



(Refer Slide Time: 09:13)

So, with this in mind, let us start understanding some simple scheduling policies. So, the simplest

policy that you can think of is simple, first in first out or FIFO policy, what is this policy?

Basically all the processes that are arriving in your system, put them in some sort of a queue.

Whenever a process comes stick it into the queue and the scheduler will start picking processes

one by one in the queue.

It will take this first process run it till it completes or terminates or blocks, then move on to the

next process and the next process and so on. There is a simple queue in the order in which the

processes arrive you will run them. And if a process runs for some time and blocks of course the

next time it comes in it will be treated like a separate job. It will be added back to the queue

again and once again it will get it start.

So, this is a simple process it is non pre-emptive, it is it let a process run for as long as it wants to

and it is very easy to implement, but the problem is that sometimes short processes can stuck can

get stuck behind some big processes suppose your P1 is a very large process that takes a long

time to run, then the other processes that come later will have to wait their turn for a very long

time. This is not ideal, especially if you have interactive processes.

So, that is the inefficiency of this FIFO policy. So, let us just see a small example of FIFO.

Suppose, you have 3 processes process, P1 that runs for 5 time units and arrives that at the end of

time interval 0 that is at just at the beginning of time slot 1. So, process P1 arrives, and then



shortly after some time another process P2 arrives, and again at the end of time unit 3 we have

process P3 arriving and this is our timeline.

So, now, what is the schedule that the FIFO scheduler will generate? So, when P1 comes FIFO

scheduler of course, starts to run P1, P1 will run for its entire duration of 5 seconds, even though

P2, P3 have come and they are shorter processes, it does not matter this is a FIFO scheduler P1

has come first therefore, it will run first.

And then after some time, after P1 ends, then P2 runs for the next 3 units P2 runs and then after

some time towards the end P3 runs, this is the schedule. So, given the arrival times of processes

and how long they will run given this information, you can create a schedule like this. This is an

example schedule of the FIFO scheduler and this is fairly easy to understand.

(Refer Slide Time: 12:00)

Now, let us move on to slightly more complex scheduling policies. Another popular though a

very theoretical scheduling policy is what is called the shortest job first. In this scheduling

policy, you assume that you know how long a process runs. In FIFO you need not know how

long the process had to run. You just let it run as long as it wants to.

But here in shortest job first you assume that what is called the CPU burst of a process that is the

amount of time a process runs in one instance, when it is given the CPU until it terminates or

blocks that is called the CPU burst of a process and you assume that the CPU burst of processes

known. And this scheduler will pick the process with the smallest CPU burst to run.



Amongst all the processes that are there in the system right now, you will pick the process with

the smallest CPU burst. Maybe you store all the processes in a heap like data structure and you

extract the process with the minimum CPU burst. You can decide what data structure to use. So,

you will always pick the process with the smallest CPU burst, but this is non pre-emptive.

Of course, when a process is running, if another process with a shorter CPU burst comes in, it

will not pre-empt the running process. It is a non-pre-emptive policy. And this policy you can

prove, if you take a course, theory course, you can actually prove that this is optimal and this will

actually minimise the average completion time of all processes when all the processes arrive at

the same time, under certain conditions, this policy is actually going to work very well.

But you still have the problem that a short process can get stuck behind a long process, if it

arrives slightly late. You have ideally you want to let the shorter processes run first, but if the

short process comes slightly late, and you have already started a long process, then this is a

non-pre-emptive policy, it will not pre-empt the running process.

Once again, let us take our same example of P1, P2, P3 that we have seen in the previous slide.

And let us try to work out what the schedule will be with the shortest job first. So, you have

process P1 has arrived and it has started to run and it runs for the entire 5 units. Even though P2

P3 are arriving and they are shorter than P1.

Once P1 has started, when P1 started it was the shortest job and just because these other

processes arrived, we are not pre-empting P1 we are not stopping P1 therefore P1 will continue

to run for its entire duration of 5 time units. Now, at this point after P1 finishes, then, what do

you do? At this point, you have both P2 and P3, but P3 is the shorter process.

Therefore here is the difference from FIFO. FIFO would have run P2, but the shortest job first

will now run P3 and then it will run process P2 at the end. This is the schedule for shortest job

first. But as you see, we wanted to prioritise short processes get them done quickly, but that may

not always happen, especially if these processes the short processes arrive a little late.



(Refer Slide Time: 15:11)

So, therefore, the improvement on this is a pre-emptive version of shortest job first that is called

shortest remaining time first. That is when a process arrives and if CPU burst is shorter than the

remaining time of the current process, then it will pre-empt the current process. If a shorter

process comes, it can pre-empt the currently running longer process thereby giving priority to

shorter processes.

And this avoids the problem of short interactive processes getting stuck behind long processes.

So, once again the same example let us see and let us see what happens with this pre-emptive

shortest remaining time first. So, process P1 has run for 1 time unit, it has arrived and it has run.

Now, after 1 time unit we have process P2 is arriving. Now, at this point P2 has a CPU burst of 3

units and P1 has run for 1 unit and it has 4 more units left. So, therefore, this is shorter than this

therefore, P1 is pre-empted and you will run P2.

Now, while P2 has run for 2 units, after 2 more units after P2 we have P3 arriving. But when P3

is arriving, P2 only has 1 unit of work left and P3 has 2 units of work. This 2 units of P2 are

done, there is only 1 unit left and P3 has 2 units of work. Therefore, P3 will not pre-empt P2 we

will let P2 continue after P2 finishes. Now, P1 has 4 units left and P3 has 2 units left. Therefore

P3 is the shorter one therefore, we will run P3 and finally at the end, this long P1 process will

complete. So, this is the schedule that you will have with shortest remaining time first.



(Refer Slide Time: 17:08)

Now, all of these are process scheduling policies that assume that you know the runtime of a

process and so on. But in real life, this may not be possible when you start when you fork a

process when you run you A dot out programme you do not know how long it is going to run for.

So, therefore, real life operating systems cannot make this assumption.

So, now we will discuss a few scheduling policies that real schedulers can use. Another simple

policy that is without all of these assumptions of knowing the CPU burst is what is called a

Round Robin or a fair queuing and there is also a variant of it called weighted fair queuing. So,

what is Round Robin? It is simple. You run the processes in a Round Robin fashion one after the

other for a time slice each.

You run process P1 for some duration, a few time units, then you run P2, then you run P3, you

go through all your processes in a Round Robin fashion, once you reach the end of your list, then

you come back again run P1 again for another time slice, maybe you run P1 for 10 milliseconds,

go to P2 10 milliseconds, 10 milliseconds go do this all the time, then come back again to P1.

So, this is a simple Round Robin or a fair queuing policy that is fairly sharing the CPU across all

the processes in the system. And you can also have a weighted version you can have a weighted

Round Robin or a weighted fair queuing where you can assign weights or priorities to these

processes. You can say process P1 is twice as important as process P2, therefore, I will run P1 for

20 milliseconds and I will run P2 for 10 millisecond, P3 for 10 millisecond and so on.



You can do this weighted fair share across different processes and where the time slice will be in

proportion to the weight or the priority. And this is a pre-emptive policy, obviously, at the end of

a time slice, you are going to pre-empt this process, you can use the timer interrupt to go off at

the end of the time slice and you are going to stop this process move on to the other process,

even if this process is still ready to run. Therefore, this is a pre-emptive policy.

And this is good for fairness and response time, every process will get its turn pretty soon. You

are not waiting for a process to finish or and keep other processes waiting for a long time you are

not doing that. And especially if your time slice is small enough, this scheduling policy has a

very good response time the processes will respond will run at least for a short period of time

very quickly.

And so if you have a real life scheduler, you may not be able to enforce this time slice very

exactly. If you say 10 millisecond, maybe the timer interrupt when it goes off already 11

milliseconds have passed or maybe just before the time slice ends at 7 milliseconds the process

has made a blocking system call. Real life processes, you may not be able to exactly enforce this

time slice.

So, what real life schedulers will do is they will just adjust this excess or shortfall of the running

time in future time slices, so you will simply keep track of how long the process has run, you

will try to enforce a time slice approximately. But you will simply keep track of how long a

process has run, and you will schedule the process that has used the least fraction of its fair share.

So, suppose a process has run over its fair share and slightly use more than its fair share in this

round. In the next round, you will deprioritize it slightly. On the other hand, if a process did not

use its fair share in this round in its next round, it might get priority. So, you will pick a process

that has used the smallest fraction of its fair share so far.

In this way you can compensate for slight overshooting undershooting of the time slice. So, this

is a practical modification given that in real life you may not exactly be able to enforce the time

slice and the Linux scheduler policy in the latest Linux kernel is a variant of this weighted fair

queuing, of course, it is very complex, it has many other features in it, but at the very basic level,

this is the simple idea behind the Linux scheduler.



(Refer Slide Time: 21:27)

So, one other policy once again which is suited for real life implementation is what is called a

multi-level feedback queue. So, here instead of Round Robin where you just had one list of

processes in multi level feedback, you what you do is you maintain multiple queues of processes.

You can have this as one queue of high priority process, then all the medium priority process you

have another queue and the low priority process you have another queue in this way you have

multiple priority levels and at each priority level, you will keep a separate queue of processes.

And you will schedule processes always starting from the highest priority level. If the scheduler

has to run it first go to the highest priority level run this process, run this process and at the same

priority level processes of same priority you can use something like Round Robin. So, the

scheduler always starts at the highest priority level, runs all these processes in a Round Robin

fashion, then it moves on to the next priority level, then to the next priority level and so on.

So, this is a different way of running processes from the Round Robin. And what is this priority?

It can be set by the user or it can be adjusted by the scheduler itself. For example, the scheduler

can do something like it can decays the priority with age, that is if a process has run at a high

priority level for some time, and it has fully run for its time slice at this high priority level, then

you can the next round, push it to a lower priority level.

Why do you want to do that? This is to ensure that short processes, if you have short IO bound

processes that is if a process just runs for a small time goes waits for some IO disk operation to



happen again runs for a short time again goes away. So, you want to prioritise such processes,

this guy is only coming to you for a very short time. So, you might as well just run him quickly.

Then again, he will go back wait for some IO operation. So, such processes, you want to

prioritise them over processes that run on the CPU for a very long time, over long CPU bound

processes, these will always run on the CPU for a very long time. Therefore, whenever you have

a short IO bound process come in, you want to quickly run that guy, because anyway, he has to

wait for IO later on.

So, how do you prioritise such processes, what you do is if any process did not use up its full

time slice, It only ran for a short period of time, then you let it remain at this priority level. On

the other hand, if it used up its entire time slice you move it to a lower priority level. So, with

time processes that are hogging the CPU, that are taking up a large share of the CPU all the time,

these processes will move down the priority level.

Whereas processes that are running for a very short period of time IO bound processes will run at

a high priority level. So, this is an small heuristic that is used to ensure that IO bound processes,

which only run for short periods of time they are given preference. And of course, you do not

want to give always preference to these IO bound processes.

You do not want a CPU bound process to always be stuck at the lowest level and never complete.

You know if a CPU bound process is at the lowest priority level and IO bound processes are

always coming in, the scheduler is always just running one of these processes and never coming

here you do not want that.

So, periodically in such algorithms which maintains strict priority levels. Periodically what you

will do is, you will reset all the processes to the highest priority levels. So, everybody gets a fair

chance to compete once in a while. So, this is to avoid starvation of low priority processes. So,

this is another example of a slightly realistic complex scheduler algorithm.



(Refer Slide Time: 25:14)

So, now finally, the last thing I want to talk to you about with scheduler is multi core scheduling.

So, all of these scheduler policies pick a process to run on one CPU core. Now, what if you have

multiple CPU cores? You have to schedule processes on the multiple CPU cores independently.

So, there are different ways of doing it. If you have these multiple CPU cores, what you can do is

you can just maintain a common queue of processes P1, P2 and so on.

And whenever a CPU core becomes free from this common queue, you can schedule processes

okay process P1 you go here, this is like you are waiting at some counter in a single file and

whichever counter becomes free you will go there. So, the core is free you run here oh no the

core has become free the next process will go here. You can keep doing this.

This is any process basically can run at any CPU core that is free, this is one way of doing it. The

other way of doing it is you somehow assign processes to cores. You have separate queues, these

processes will run on the core, these processes will run on the core and so on. You have separate

queues waiting for each core.

And whenever, so, first, this process will run on the core when its turn is done the next process

the next process and so on. So, you can bind the process to a particular CPU core and run it on

the core always or you can let any process run on any CPU core. Accordingly, you will maintain

this data structures of, this list this queue of ready processes, it can be a common queue or it can

be a per-core queue.



So, what are the pros and cons of both these approaches both these are possible, but they have

their own advantages and disadvantages. So, ensuring that a process runs on the same core as far

as possible, this policy is better for the following reasons. Why? You will have cache locality,

that is when a process is running on a CPU core recollect that a CPU core has multiple layers of

cache that are private to itself and you only have the last level cache that is common across

different CPU cores.

Therefore, if a process is running on a CPU core, all of its some of its core data could be in the

private caches of a CPU core. So, therefore, it is simply more efficient and faster to let a process

also just resume on the same core again in the future. Because then you will get good cache

locality you will get good hit rate in the cache.

The other reason is that you have some kind of NUMA systems, which is in some systems we

have discussed this along back in some systems, some memory is closer to some cores. You have

a large number of cores and you have different RAM and for these cores, it is faster to access this

RAM for the CPU cores it is faster to access this RAM.

So, in such systems, what do you do, if the memory image for processes in this RAM, it is better

to schedule the process in the cores, if the memory image of the processes in this RAM it is

better to schedule the process on the cores. So, this is called NUMA aware scheduling. In such

cases, a process that is there in this area of the RAM, even if the CPU core is free, you may not

want to run it there because accessing this memory is very slow.

So, this is the other reason why you might want to just pin processes to one CPU core or a set of

CPU cores. And another reason is that if you have these per-core queues, it avoids

synchronisation. So, any time different CPU cores have to access a common data structure, there

will be overheads like acquiring locks, there will be cache coherence, we have studied all of

these things.

In general, if a CPU core is accessing one item of data, it is better if other CPU cores also do not

access the same item of data, to a wide this synchronisation across CPU cores also, having per

core queues is better. So, for all of these reasons, it might seem like a good idea to just allocate

processes to CPU cores and CPU whenever it is free, it will pick from its own queue. But the

disadvantage of doing that is this is not flexible.



If one core is overloaded this CPU has many processes that are taking a lot of time and some

other CPU is just free, that is not sensible, that does not make sense. So, in such cases, what do

you want to do? You want the CPU core to take some of the work from the overloaded core.

Therefore, if you are doing per core queues of ready processes, then you must have some way for

load balancing across these cores, to ensure some uniform distribution of workload.

So, these are all the things to keep in mind when you are thinking of a multi core scheduling

algorithm. So, most of the schedulers and real operating systems have to consider all of these

points, because most systems today are multi core systems and all scheduling algorithms have to

solve these issues around multi core scheduling. So, that is all we have for today's lecture.

(Refer Slide Time: 30:31)

To summarise, in this lecture, we have studied, what is the scheduling policy, what are its goals.

We have seen some examples scheduling policies starting from very simple ones on to more

complex realistic ones and we have also seen what should a scheduler do in case of multi core

systems. So, a small exercise for you just think of examples of real life schedulers.

In real life, if you have a counter and you have some queues and you know, any time any system

in real life, where you have some scheduling going on, just think of what is the kind of

scheduling policies that are used in real life.

For example, if you submit some applications to your office in a college, do they look at the

applications and pick the easiest applications that take the smallest amount of time, do they



process them first, do the process them in the order in which they came in. So, just look around

in real life and try to find examples of the scheduling policies we have studied today. Thank you

all. That is all I have for this lecture and we will meet back again in the next lecture. Thanks.


