
An Introduction to Programming Through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture 22 Part-7

Representing variable length entities

Using the implemented class and conclusion

Welcome back. In the last segment we gave the definitions the complete definition of our string

class.

(Refer Slide Time: 00:25)

Now, we are going to use that first to solve the problem with which we started this lecture.

(Refer Slide Time: 00:34)

So, the problem was how to store many names of varying sizes. So, here is the program, so we are

going to read 100 names and store them. So, for that we are going to allocate an array of stings .So,

it should be instructive to just see what this actually does. So, in the main programme this is going

to create an array of string objects.

(Refer Slide Time: 01:03)

But let me remind you that a string object is really very simple, it just contains a single PTR, so this

that PTR. So, we have 100 PTRs really because each object just contains one PTR. So, 100 words

will be allocated in the activation frame. And this PTRs will be null by the way, at the beginning.

(Refer Slide Time: 01:45)

Then to do the reading of the names we are going to use this buffer of 80 characters. This is just

meant to be a large enough number and now we are going to read each of the 100 names. So, in this

loop iteration we are going to that. So, this time let us say we use the safe alternative but this will

also allow us to get in the spaces.

So, this will cause the name to be read from the keyboard new line terminated into our char array

buffer and of course inside the buffer it will be stored with a null termination and then we are just

going to assign names[i]=buffer that is it.

(Refer Slide Time: 02:34)

So, if you remember how is this going to work, names[i]=buffer. So, this is going to be viewed by

C++ as names[i].operator=(buffer). And if you remember we defined this operator equal to a minute

ago and operator equal to which takes a char array as argument. We defined that a minute ago and

so what that will do is it will allocate some space on the heap and it will start pointing this pointer to

this and it will copy whatever was in the buffer into the space.

(Refer Slide Time: 03:33)

So, in this code we are not mentioning things like how many characters did we read into buffer but

all that will happen as a result of this assignment, so that is it, that is the code. Now, you can use this

names array however you want, you can do whatever you want with the names inside that array.

So, again just want to point out that we have solved the problem that we started of this lecture with

the number of bytes used for names[i] will be equal to 1 plus the number of characters and

incidentally this was exactly the solution we got even in the solution that we got very early on in the

lecture, we had the same situation in the activation frame, we had an array of pointers.

(Refer Slide Time: 04:22)

Even here we effectively have an array of pointers although we called it an array of string objects,

the string objects themselves are containing only one member which is a pointer and that pointer

points to something on the heap on the names which are stored on the heap. But the beauty is that

over here in this solution, we are not talking about heap at all. We are not talking about how many

characters we are transferring, how much we are allocating and anything like that.

(Refer Slide Time: 04:45)

So, all this is implemented automatically. And we are not mentioning memory allocation. And we

do not have to worry about memory leaks, we do not have to worry about dangling pointers, our

implementation of string class takes care of all of these things.

(Refer Slide Time: 05:11)

So, I am now going to give a quick demo which uses our string class. In this program we did not

use the concatenation feature but in this demo we will be doing so, so let us take a look at that. So,

this is words, so here I have copied the length and scopy functions and then over here our string

class starts. The string class is here with the member functions.

(Refer Slide Time: 05:46)

So, all the operators, everything is there and this is the destructor which we also wanted.

(Refer Slide Time: 05:59)

So, what is our problem? So, the problem that we are going to look at is sort of a fun problem,

nothing useful by any means but just a fun problem. So, what is the problem? So, I will tell you

what are we going to do. So, this program is going to read in a number from the user first and then it

is going to print out something, so that is about what it is going to do.

So what is it going to print out? So it is going to read in a number which it expects to be a two digit

number. Actually it expects the number to be between 20 and 99, so if you type a number between

20 and 99 say you type 37 then this program will print out 37. So, it just writes the number in words

and it does this only for a two digit number but it illustrates the kinds of things that we have been

doing over here.

So, what happens here? So, first we have an array of strings by the way once we define strings then

the C++ machinery will allow us to define arrays of strings, that is no problem. So, we will have an

array of strings, one array called units and another array called tens. So, in units we are going to put

1,2,3,4,5,6,7,8,9. We could put a 0 over here as well but we really do not want to because you will

see why we are not putting a 0 and in tens again we are not putting a 0 but we are putting 10, 20 all

the way till 90.

So, what is this doing over here. So, you give me a number then I am going to extract the tens digit

from it, so that is simply z divided by 10 and then I am going to use that to index into the tens array.

So, suppose the number I type was 37 then the tens digit or 37 divided by 10 is going to be 3. So, I

am going to index into this and now that will get me my thirty. So, remember that I am supposed to

print 37, so I have now been able to get thirty from this. Then I want a dash, so dash is another

string called dash which I have assign to this character dash.

So, I am going to add it or I am going to concatenate these two strings together but I also want the

unit’s place, so to get the unit’s place, I just have to do z mod 10 so for 37 this would be 7. So, units

of 7 would be this, so I would get 7. So, from this I would get thirty, from this I would get dash and

from this would get 7. So, I would get thirty dash 7 concatenated which I am going to print and

since print is not putting an end line, I am going to put an end line myself. So, that is all varies to

the program.

It is kind of a trivial program but it does illustrate some ideas one of the ideas is that you can use an

array of characters to do some interesting things because you can index into that array but most

importantly I am doing this because I want to show you that here we are able to concatenate the

objects which we are storing in our string class.

(Refer Slide Time: 09:45)

So, let us compile this and run it and let us run it. So, let us see we write 37, so we do get 37. Let us

do one more, say 85 and we will get 85. But let us do something improper.

So, let us say we type 5. So, let us see what we got, so we got the 5 alright but that 0 in tens place

did not come as it should not have come but we did get that dash because that dash is there, so

maybe we should write we should modify our code so that dash also does not appear and of course

you really should make some special cases, you should put in some if statements to check whether

the numbers are 11,12,13,14 all the all the teens basically and for all the teens and ten itself and

11,12 there should be a special case and those cases should also be handled. .

So, anyway, so that is what this program does and as you can see it uses the capital string class that

we just created

(Refer Slide Time: 11:09)

And we are really at the end of the lecture, so I just want to make a few concluding remarks. So, our

class string performs memory allocation and deallocation behind the scenes and it happens

automatically in the sense that the user is not really aware of what is going on. Now, string variables

appear as simple as char variables.

So, when you use char variables you do not really need to worry about where are these stored or

you could think of them as being stored in the activation frame and if you want you can think of the

string variables also has been stored in the activation frame That will not really cause any major

problems. The only difference is that the string variables can contain character strings of arbitrary

length rather than chars, individual chars.

So, in the next lecture we are going to see a class from the standard library called string where s is

not capitalized and we will see that it is a richer version of our string class but the point of

discussing this capital string was to see how such classes can be implemented.

So, the basic idea is that these classes that we are going to see that appear in the standard library and

some of which we are going to see soon use memory allocation and deallocation from the heap and

as an example we have studied this, we have designed and studied this String class and there are

other classes in the standard library which we will discuss and one of them will directly enable you

to store polygons, variable sized polygons as was mentioned at the beginning of the lecture. So, that

concludes this lecture, thank you.

