
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 21 Part- 1

Classes

Constructors

Welcome back!

(Refer Slide Time: 0:23)

In the previous segment we talked about software components. In this segment we are going to

talk about constructors.

(Refer Slide Time: 0:31)

So, as motivation for this, let us examine the Queue struct in taxi dispatch. So, this is the

definition of the queue, the queue struct and if you remember, there were these, there was an

array of elements storing the waiting drivers IDs, then a few variables, then an initialize member

function and insert and remove member functions. The main program looks something like this.

So, we started off by declaring, by defining the queue creating the queue and that we called

queue.initialize(). And then there was a fairly long, there was a loop which I have not, not put

over here I want to look at these 2 statements.

There is a simple problem over here, which is that a programmer may forget to call initialize, he

will forget. What do you do? It turns out that the designer can ensure that nwaiting and queue

front will become 0 which is what, which was the job of initialize if you remember, even if the

programmer forgets to write this. How that happens, we are going to see in a minute. But that is

the, that is the idea that somehow when we create the queue, we will execute something

automatically, which will cause nwaiting and front to become 0.

(Refer Slide Time: 2:09)

So this, this special code that we execute at the time of the construction of an object is called the

Constructor Code. So, basically the constructor is called, whenever an instance of a struct or a

variable or a variable of a struct type is created. Now, in inside the body of the structure

definition, in the structure type definition, a constructor has the same name as the struct and it

does not have a return type. So, we will see that. So for a struct queue these were the members,

and here is the constructor. So, queue there could be parameters, but this particular constructor

does not have a parameter.

And then we are going to give the code that is to be executed. That is it, ok. So, this is what the

constructor is and in main the moment I define queue, I define q as an object of type, structure

type queue, this code is automatically going to be called. So, so the variables will be created and

then this code will be called. So, the code inside the constructor is expected to perform

initialization of the members, but of course it is any code, so you can make into whatever you

want. But that is why, but its purpose really is, it was intended, the notion of constructor was

created so as to enable initializations. So it is really the designer who is keeping track and saying

that, “Oh! Look, when you create you need to initialize, and therefore, I will give you a way of

making that happen automatically.” And then the user just writes this and the initialization

happens. So the constructor is called automatically.

(Refer Slide Time: 4:34)

So, in general, we can have constructors in any struct. So, here is a struct x which is in defined

and here is the constructor, so this is the body of the constructor. And in main I can have, I am

declaring little x to be an object of type capital x and I am supplying these arguments and this

will cause this constructor to be called. So, the constructor can take arguments and the creation

of the object x in main can be thought of as happening in 2 steps.

First, the memory is allocated for x, in the activation frame of main and then the constructor is

called on x with the given arguments. So this code executes, but with respect to these arguments.

And, and if you have members referenced over here they are considered to be the members of the

constructed structure. You can have many constructors provided they have different signatures.

And we are going to see example of this as well.

(Refer Slide Time: 5:43)

So here is an example of a constructor for V3, so this first constructor does not take any

arguments and it just sets all the members to 0. This constructor takes 3 arguments, constructor

takes a single argument and it sets all the members to that single argument. Are these useful?

Well if they are not useful you can define your own, but I am showing this just to show you what

the possibilities are.

So, how does the main program work? Well the main program works when defining V1 here and

argument has been given, so the constructor which takes a single argument, so since the single

argument is given, the constructor taking the single argument is called, so this is the constructor

is takes a single argument, so thus, it means that v1 dot x, v1 dot y, v1 dot z are set to the value 5,

set to value a which in this case is 5.

When defining v2, no arguments have been given, we note that we are not putting parenthesis

either. So, this is kind of a non- uniformity but that is what it is, we are not putting parenthesis.

So, we are defining, we are just giving the name of the variable which is being defined, and since,

no parenthesis are given, no arguments are given, we look in the definition of v3 and see if there

is a constructor without arguments so this is the one. So, this constructor will get called v2.x,

v2.y, v2.z will be set to 0. So, that is how constructors works, so these constructors work.

(Refer Slide Time: 8:05)

So, now you might have wondered we have been creating all these structures without even

knowing about constructors, so what is going on then? Well it turns out that C++ defines a

constructor for which, which takes no arguments and does nothing, if and only if you do not

define a constructor. So in the earliest examples we did not define any constructor, but you could

think of this way that C++ supplied a constructor which is really doing nothing. So you could say

that there is always a constructor either something provided by C++ or something that you

provide. Now, there is a technical term which is very commonly used which is the notion of a

default constructor. A constructor that does not take arguments and this constructor might be

defined by you or by C++ is called the default constructor. If you define an array of struct, each

element is initialized using the default constructor. So, if you want to construct an array of, of a

certain kind of struct, then you had better have a default constructor.

So, now look at this line, if you define a constructor, then C++ does not define the constructor.

So, if you define a 2 argument constructor, then C++ will not even define a 0 argument

constructor. But if you want an array of struct, then that is not a satisfactory state. So if you, if

you define the 2 argument constructor and you want to define arrays then you had better also

define a 0 argument constructor and it could do nothing but that is fine, that is what C++ would

define on its own anyway.

(Refer Slide Time: 9:42)

One more remark, so if a member itself is a struct, then its constructor is called first and even this

is the default constructor, however that constructor is used. So, for example, struct point double x,

y, I have struct disk point center, so when constructing disk center will be constructed according

to the constructer of point.

(Refer Slide Time: 10:14)

So, what have we discussed in this segment? So we have said that the constructor can be defined

so that variables get initialized in the, initialized the moment they are created automatically.

There can be many constructors with different signatures. Next, we are going talk about

something called operator overloading, but before that we will take a quick break.

