
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 21 Part- 1

Classes

Introduction

(Refer Slide Time: 0:26)

Hello and welcome to the NPTEL course on An introduction to programming through C++. I

am Abhiram Ranade and today’s lecture is on classes and the reading material for this is

chapter 18 of the textbook.

(Refer Slide Time: 0:33)

So, here are the main recommendations from the previous lectures. First, use a struct to hold

information related related to each entity entity that your program deals with. Then define

member functions corresponding to actions or operations associated with the entity.

(Refer Slide Time: 0:52)

The main theme of this chapter is to take this idea further in the following sense. So, the goal

is to build something like a software component around a structure. Now, software

components are useful for building large software systems just as hardware components are

useful for building large hardware systems. And a software component must be convenient to

use and also safe exactly in the sense that hardware components are convenient and safe. So,

for example, they should software component should help prevent programming errors.

(Refer Slide Time: 1:42)

So, we have been talking about this theme for some time now. So, let us just clarify this a

little bit more. So things that you buy from the market are packaged and made safe to use.

Fridge, television, are some of these things. So, for example, there is no danger of getting an

electrical shock. A control panel is provided on the device. A user does not have to change

the capacitor values somewhere to change the channels on a television.

The analogous idea for software is that the make the functionality associated with a struct

available to the user only through member functions. So, this is kind of analogous of the

control panel and do not allow the user to directly access the data members inside a struct,

just as a user is not allowed to touch the circuitry inside a television.

And in some sense, the user has no business looking inside right that is the attitude that is that

that is the view that is taken. Or the user does not want to know what is going on inside just

to keep keep his or her headache low. And I mean keep separation of concerns. The user has

lots of things other things to worry about.

So another idea is that if you build a better fridge, you often keep the control panel the same

as the previous model. The user does not need to relearn how to use the new fridge. If you

build a better version of the struct, but if you keep the member functions signatures the same,

then the program that uses the struct does not have to change. So these are the kinds of things

that member functions and this kind of discipline will allow us to accomplish.

(Refer Slide Time: 4:01)

So, the modern version of a struct can behave like a packaged component and the designer of

the struct provides the member functions. Actually the designer of the struct can do lots of

things. So, for example, if I have an ordinary variable, lots of things sort of there are lots of

standard operations that can be performed on variables. To begin with, and we have to create

that variable so there is the creation of the object. Then I may want to assign, I may want to

pass the object to a function and we want to pass the struct or object or whatever, back from a

function I want to return it as a result.

And we know that when control leaves a scope, the variables which have been created inside

in the activation frame have to be destroyed. So, the modern version of a struct allows you to

customize these operations however you want. And that gives the designer a lot of freedom

and the freedom can be used to do quite some imaginative things.

Now, in this course, we are not going to talk about all these things at least not immediately.

We are going to talk about just the creation. In todays lecture we are going to say, how the

designer can decides what happens during creation? And the idea is that once structs are

designed in this manner using them becomes convenient and less error-prone.

So, we have been, we have been talking about all these things for some time now. But in

some sense, they are going to come to fruition in this lecture. And structs which are endowed

with such features are also called objects. So, have been using the term objects but the

technical meaning is an object is something is a struct or it is a variable created from a struct

but which can have all such features.

(Refer Slide Time: 6:13)

Alright, so here is an outline of this lecture I am going to talk about something called

constructors. I am going to talk about operator overloading, I am going to talk about access

control, then I am going to talk about classes, and then I am going to talk about some special

classes for graphics and input and output. So, what have we discussed so far in this segment?

(Refer Slide Time: 6:40)

We have said that you like to build safe and convenient software components, safe means less

likelihood of errors. Basically, this means think through how the component is going to be

used and provide a set of corresponding member functions. And we will see that we can even

disallow direct access to members and the idea behind this is that usually such access is likely

to be error-prone.

We want our objects to be convenient in the following sense that they make it easy to think

about parts of the program. So, member functions should provide a very clear interface and

the users of the components should not worry about how the functionality is implemented.

So, they do not, the component should be designed so that they do not need to look inside.

So, there should be very very nicely designed control panels so to say. And I should say that

these are guidelines and this is how we would like software to redesign. But sometimes it

does not work that way and that is okay, once in a while, provided you have good reasons.

Alright, so next we will discuss constructors but before that let us take a short break.

