An Introduction to Programming through C++
Professor Abhiram G. Ranade
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Lecture 20 Part 2
Structures Part 2
Vectors from Physics

Welcome back.

(Refer Slide Time: 0:34)

What we discussed

* Itis not enough to just define a Struct to hold entities, usually we will
also define functions which work on structs.

* In C++, you can make the functions a part of the struct definition itself.
Such functions are called member functions.

* Member functions are similar to the control panels found on the front of
appliances
~ You are expected to operate an appliance theough the buttons/other controis
specifically provided
- Yg: a’:{ not expected to open the back and make connections to change the
channel.

Next: Example: Vectors from physics

In the previous segment, we motivated the need for member functions. In this segment, we are
going to talk about vectors from physics and then later on, see how they how they can be
implemented using member functions and the operations on the vectors using member functions.

So, we have already talked about this.

(Refer Slide Time: 0:44)

A structure to represent 3 dimensional vectors

Recap:

* Suppose you are writing a program involving velocities and
accelerations of particles which move in 3 dimensional space.

|'/-)

So, say you are writing a program involving velocities and accelerations of particles, which
move in 3 dimensional space. Then you would find it natural to represent the vectors using a
structure with members X, y, z. So, V3 is the structure type so for 3 dimensional vectors, and its
members are X, y and z, which are all doubles. And, of course, other representations are also
possible.

(Refer Slide Time: 1:21)

Using struct V3
+ Several operations can be useful with V3 scale(const V3 &a,
vectors double f){
V3 v;
V3 sum(const V3 &a, vxXEaxs
const V3 &b){ vy=a.y* i
V3 v; v.2 =32 2x* %
V.X = 3a.x +b.x; return v;
v.y = a.y +b.y; }
v.Z = 3.z +b.z; double length(const V3 &v){
return v, return sqrt(v.x*v.x +
} V.y'VLY vz 2),

So, how do you use this struct V3? Well, there could be several operations that you might want
perform. So, for example, you might take 2 vectors and add them up together. So, a function, an
ordinary function which does this, would look something like this. So, you have this function
name. And this function is going to return an object of type V3 or structure of type V3 and it is

going to take arguments which are also of type V3 and we are taking arguments by reference.

So, first it is going to create internally, a V3 object called v and this is going to be our result. So,
what is the result going to look like, well its x component is going to be the sum of the x
components of these two objects similarly, the y, similarly the z. Then you could have a scaling
operation which takes vector and a scale factor, and simply multiplies the scale factor that each

of the members and so the resulting vector is going to be returned.

As you remember, this operation is going to return this vector that means the values will get
copied in some suitable place in that calling program. Here is another possible operation that you
may want with vectors which is a length operation. So, the length operation simply takes a single
vector and it returns the square root of the sum of the individual members. So these might be
some operations that you might want to perform on your structure type on objects of your
structure type V3.

(Refer Slide Time: 3:29)

Motion under uniform accel

* Initial velocity = u, uniform acceleration = a,
+ displacement s = ut + at?/2, where u, 3, s are vectors, t = time
+ To find the distance covered, we must take the length of the vector s.

int main(){
V3 u, 3, s; // velocity, acceleration, displacement.
Cin 2> u.x 2> u.y >> u.Z > a.x > a.y » a.z;
for(double t=0; t<18; t++){
s = sum(scale{u,t), scale(a, t*t/2)),
cout <<t<<”: "<< length(s) << endl;
}
}

Well here is an example of use of vectors in which these operations can come in quite handy.
And this is so called motion under uniform acceleration. So, we have a particle which has initial
velocity u and uniform acceleration a. Then its displacement at time t, ‘s’ is given as u times t
plus at square by 2 and this is applicable even if u, a and s are vectors and t is a scaler, if it is a
time. To find the total distance covered or the total displacement rather we must take the length

of the vector s.

So this might be whatever program looks like. So, we have V3, we have 3 vectors of type V3 u, a
and s - velocity, acceleration and displacement. And first we read values into u and a. Next, we
could we could calculate this for single value of t but just for fun we will calculate it for multiple
values of t. t ranging from say 0 through 9. So, what will this how we will do it? Well so s is

going to be sum of these two quantities and what are these two quantities?

Well they are u scale by t and then a scale by t square upon by 2. So, what is going on here? a is
a vector, scale of a and t square by 2 is also a vector. That vector and scale of u times t are being
added up and the result is this sum, is this displacement s and this displacement is also a vector.
So, this looks like an ordinary assignment, but really it is it is more complicated than that, when
you when you look at in the ordinary assignment you are tempted to think of it as sort of basic
data types.

Whereas over here, 3 components are being assigned in parallel, or 3 components are being
passed to this function and this function is returning 3 components, so is this. So, then we print
out as a function of t, the displacement that has happened and that is it. So, that is the program.
As you can see we could have return this program by accessing each component of u, s and t, but
rather than that we chose to use these functions sum, scale and length. And the reason for that is
that they reflect better what operation we are actually performing. And furthermore, once you are
somebody writes the operations sum, scale and length and tests them and make sure that they are

right, then you can be more confident that your code is actually correct.

(Refer Slide Time: 6:48)

o WITA24D

- Teturn ¥

)

-

o slefco b,
- H
.-

vE=aa sl

Cotd vysagsf;
. vIEagef;
= retun v;

)

laagthicenst v} &vi{
retern syrtivaae,x +
VWY 4 Vw2l

saini
e 8, 83 velecity, sceeleration, displacessst,
T8 55 4.X 30 G) 3 Ul 2 3.X 0 &Y » a3

Wi —F1 V3se.cop Top L1 (Coe/L Abbrev) 3:389 131

£150 Lacenent

o) 53 ity, » ion, ¢
* CIA O G.X 0 5.Y 3 U 2 X2 Y ™2
3 ford =2 1<l teel
s = sslscate{u,t), scalels, tot/21);
Cout <ete<”s “ox lemgthis) << endl;
}

W —F1 V39se.cop Bot 127 (Ces/L Mbbrew) 3:38P% L1 ————

So, let us do a quick demo. So, first we have the structure type, then the sum, then the scale,
length and then we have the main program. It is really what we what we saw on the slides. So, let

us just run it, compile it and run it.

(Refer Slide Time: 07:03)

diskistersect.cpp Sisklatersect.datl disklatersect.dats
tiskistersect.cpp disklatersect.dat

3 ~/Deskiop/eptelfveed /2.0t cdiskintersect,satl

-l

o Deskiop/spteliveess | . /p.out <iskintersect.detd

-t

w~/Deskton/eptel veskd 1 15 -1
wtotal 653
Mer-r—r—@ 1 athiras staff 34093 spr 30 05:20 Lactured.l.pp%x
"merw-r—r—@ 1 sthirae staff JS6N Apr 38 85:2¢ Lectured.2.pptx
JwTer—r—@ 1 thiras staff S380N spr 30 10:23 Lectured.3.pptx
=-ne-r—r— 1 athirae staff 619 fpr 38 85:52 VIvse.qp
e Tr—r— 1 athirae staff 257 Apr 30 €5:50 V3use.cpp~
L nWer-xr-x 1 athirae staff 136582 Apr 38 14:58 a.cute
“-rw-r—r— 1 athiras staff 837 Apr 29 16:13 diskintersect.cpp
rR-ner—r— 1 akirae staff &3 fpr I8 13:18 diskintersact.cpp~
~n-r—r— 1 athirse staff 35 spr 28 13:38 diskintersect.datl
Cotd-rw-r—r— 1 3thiram staff 55 Apr 29 15:15 diskintersect.aat?
wd=n-r—r— 1 sthiras staft 35 fpr I8 13:32 diskintersect.dat~
Teanwer—r— 1 3thiras staff &35 Apr 38 03:06 kicematics.cpp
~tu-f—r— 1 abhiras staff 39 Spr 30 83:06 kirematics.cpp~
-r-r—r— 1 abbiras - staff 587 spr 28 17:11 marks.cpp
1 athiras staff 28 fpr 28 16:46 marks, cpo~
1 athirae staff 273 Rpr 38 B5:99 painters.cpp
staff 280 dpr 30 €5:85 painters.cpp~
1 open Lectured.2,pptx
~/Deskiop/eptelveeid 1 &
esaCS polaters.cpp

005 painters. o

. —

1
~/Desktop/aptelivestd 1 /0. 0ut <diskintersect.can2
“?
S~/Deskrop/sptalweskd : I -1
“total £
S-ner—r—8 1 athirae staff 84033 Apr 39 95:28 Lactured.l.pptx
w-ner—r—§ 1 athiras staff J360 Apr 30 95:24 Lectured.2.pptx
em-Ner—r—§ 1 3bhiras staff S300% Apr 38 11:23 Lectured.3.pptx
Moni-r—r— 1 athirse staff 618 fpr 30 85:52 \OSse.cpp
‘metw-r—r— 1 3thira staff 37 for I8 85:58 e, cpp~
cwnor-xr-x 1 athiras staf! 136580 Apr 30 14:58 a.cute
S-ner—r— 1 athirae staff 837 dpr 2§ 15:13 diskintersect.cm
v Ter—r— 1athirae staff &3 Apr 28 15:14 diskintersect.cpp~
owTr—r— 1 a8biras staff 5§ Apr 28 13:38 diskintersect.dst]
“-n-r—r— 1 abhiras staff 55 Apr 29 16:15 diskintersect.dat?
*S-ne-r—r— 1 abhirae statf 55 Apr 28 18:32 diskintersact.dat~
~fW-r—r— 1 3thirae staff 31 Apr 30 83:06 xisematics.opp
Cwtd -tw-r—7— 1 athirae staff 433 fpr 30 03:96 kirematics,Ipp~
w-ni-r—r— 1 3thires staft 57 sor 28 17:11 marks.cpp
Teg-twer—=r— 1 adhiras staff 2 fpr 28 15:46 marks. cpp~
~u-r—r— 1 athiras staff 273 Apr 30 65:08 painters.cpp
~r-r—r— 1 athirae staff 29 Jpr 38 95:25 painters.cpp~
Desktop/eptel/vesid 1 open Lectured. 2, pptx
v/Desktop/aptel/vesid : &
05 polaters. pp

1]+ Stopped esacs pointers.cop
JDeskrop/sprelveskd @ 5o Viise.cop

+ go VilUse.cpp Ll JUsers/adsiran/simplecpp/Lib/ibsprite,a -1/
sisplecpn/include -[/opt/X11/ daciude -Liope/ NI/ 1D ~1X11 ~std=cesl]
/Desktop/eptelvesd 1 /e 0ut |

~/Desktop/spteliveskd : . /a.out <diskintersect.cet?
]

w~/Deskiop/aptelfveesd 1 Ly -1
=total 683
“orw-r—r—9 1 athiran staff 84833 Apr 30 €5:20 Lectures.l.pptx
CSenwer—r—g 1 athiras staff 796N Apr 38 95:2¢ Lactured.2.pptx
w-ne-r—r—§ 1 athiras staff 53600 Apr 38 11:23 Lectured. 3. pptx
emon-r—r— 1 abkirae statf 618 fpr 38 15:52 V3use.pp
tonu-r—r— 1 thiras staff 57 dpr 30 €5:50 \Iuse.cpp~
faenacr-ar-x 1 athiras staff 136580 fpr 30 14:58 a.euts
ar—r— 1 3thiras staf! 837 dpr 29 16:13 diskintersect.cpp
J-re-r—r— 1 athirae staft &3 fpr 28 13:14 diskintersact.cpp~
o Tr—r— 1 3bhirae staff 55 dpr 28 13:38 diskIntersect.catl
o ner—r— 1 athiree staff S5 Bpr 29 16:15 diskintersact.cat
“-n-r—r— 1 abhiras staff 35 fpr 28 18:32 diskintersect.dat~
rRoru-r—r— | athinae staff &31 fpr 38 83:06 kirematics.pp
~fw-r—r— 1 3thirae staff &35 dpr 3@ 83:06 xisematics.ope~
Cotd-ru-r—r— 1 3thirm staf! 597 spr 28 17:11 marks, cpp
a-ni-r—r— 1 athirae staf! 2% Aor 28 16:46 marks. cpp~
Sener--r— 1 athirae staft 273 Rpr 38 ¥5:09 painters.cpp
-f-f—r— 1 abhiram staff 280 fpr 30 65:45 painters.cpp~
: open Lectured.2,pptx

{1+ Stopged enacs pointers.cpp
~/Desktop/aptel/veekd : see VIlse.COP

+ ge+ Vilse.cpp -Wall JUsers/adhiras/sisplecpp/1ih/ibsprite.a ~1/Users/athiraw
sinplecpp/ include -L/opt/M11/ daciode ~L/opt/XI1/1 -IX11 ~std=cesl)
whesktop/optalleeedd : . /3.00t

pee10y

e ——
~n-r—r— 1 athiras staff &3 spr 28 13:18 diskdntersect.cpp
-ni-r—r— 1 athiram staff 55 Apr 28 13:38 diskintersect.datl
-ni-r—r— 1 dhirae staf! 35 sor 29 16:15 diskintersect.dat?
- -rw-r—r— 1 abkiras staft 55 Apr 28 18:32 diskintersact.dat~
~fu-r—r— 1 athiras staff 435 fpr 30 85:06 kiresatics.pp
faener—r— 1 athirae staff 433 fpr 39 83:86 kisesatics.cpp~
w-ner—r— 1 athiras staft 52 fpr 28 17:11 marks.cpp
e oN-r—r— 1 abhiras staff 21 hpr I8 16:46 marks.cpp~
S-r-r—r— 1 3thiras staff 173 Bpr 38 85:99 painters.cpp
‘u-n-r—r— 1 athirae staff 290 fpr 30 85:25 painters.cpp~
s ~/Deskop/aptelfveekd 1 open Lactured.2.pptx
“~/Deshtop/sptelivestd @ A
e E9OCS pointers, cpp

‘:lll~ Stopped £8aCs pointers.cp
~ S~iDesktop/aptelivecks : ses V3ise.cp
e ges Vilise.cpp L0 Usery/athiras/sinplecpn/1ib/libsprite,a -1/ Users/athirany
Cotd simplecpp/ include ~Lropt/R11/aclude ~L/apt/XIL/ LD ~1X11 ~std=ceel)
w~/Desktop/eaptellveeid 1 /200t
M IEBE R
L5

gHEgpesves
Fabod S P
A oo

=y
w

1
2
3
4
5
§:
]
{1
9

/Desktop/eptelvestd ; |

So, now we are supposed to type in the velocities and the accelerations. So just so that we can
see what is going on. Let me type the initial velocity to be 0 and let me type the acceleration to
be say 1. So this is a plot of what happens to the particle as a function of time. So by making
these things simple, you should be able to check that these are in fact the correct answers. So,
what is going on over here is, | guess, you can think of it as a particle which is initially at rest is
moving may be falling down to gravity or something like that. Now we could ask, can we do the
same thing with member functions? And this is how it looks like.

(Refer Slide Time: 8:23)

Structures with member functions

struct V3{ « lengthisamember function.
double x, y, z: * Member function f of 2 structure X must be invoked
jouble langtt “on" a structure S of type X by writing
s.f(arguments).
* siscalled receiver of the call,
* Example:v. length{). Inthis v is the recaiver,

}: + The function executes by creating an activation frame as
= usual,

SR
1’:[Tf":‘“‘ 1 * References to members in the body of the definition of
V3 v={1,2,2}; the function refer to the corresponding members of the
cout << v.length() receiver.

<< endl; » Thuswhen v, length() executes, x, y, Z referto

} 20 {0 R P Py
« Thusthe v, length() will retum sqrtf1%+2%2%) =3 "
* Member functions can modify receiver members,

&d Dy referance

So, here we have a member function, which calculates the length and that member function is
being called over here. This red text is the call of that member function. So, length is a member
function. You can see that it is inside the structure definition. And a member function f of a
structure type x should be invoked on a structure s of this type x by writing s.f(arguments),
which is exactly what has happened over here.

So, V is a structure of type of V3 and we are invoking this function on v by writing v. length.
There are no arguments specified over here. So, no arguments are given here as well. Now, this s
or this v is called the receiver of the call. So, there is another analogy here as well that this part is
sometimes even called a message being sent. A message is being sent to this object and that

object responds, so that is that is another metaphor that is used.

But anyway we are going to call this thing before the dot as the receiver of that call. So, in
v.length, v is the receiver, and it is a function call. So, all function calls it executes by creating an
activation frame. And the references to the members of the body of the definition of the function
refer to the corresponding members of the receivers. So see this you have x.x, y.y, z.z. What are
these x, y, z? Well they are these, but as far as these calls are concerned they are members of the
receiver. So this x.x, when this call is being made will actually refer to v.x, this is refer to v.y,

this is refer to v.z. So, then v.length executes X, y, z refer to v.x, v.y, v.z. So, as a result of this

v.length is going to return one square plus two square plus three square plus two square again. It

is square root so 1 plus 4 plus 9 square root of that is 3.

Now, the receiver itself is also an argument otherwise how would you know what does x mean.
So, this receiver is an argument and it is it is kind of a hidden argument. Well it is not really
hidden. It is actually upfront, it is it is really at the front. So, it is a kind of a special argument.
But it is not there in the argument list, in the parameter list. Alright, but it is an argument

nevertheless. And it is an argument which is passed by reference.

So in this code, if you change x then the x member of v is going to get changed. So, it is this v is
being passed by reference that is why this happens. If v is v is passed by value, then if you
change x that would not be that would not happen. But indeed, the receiver is passed by
reference. So, we can write the other functions as member functions and here is the complete

definition.

(Refer Slide Time: 12:15)

The complete definition of V3

struct V3| int main(){
double x, y, 2 Viu a, s:
double length(){ dosdle t;
return sqri(e®x + y'y + 2*1) CiR 2 u.x » uy »uzx>»
) ANy 3T
V3 sum(V3 b} t pit

Viy
VX = xdboxl vLyEYRbLy. v.1EIebY
return v, I P
// green statements equivalent to red
V3 scale(doudle 1) out << u.scale(t

Viv sum{a. scale(t*t/2

RS G AR) HE A RS 5 ength() << end

return v,

So, this is our struct V3, the members then this is a first member function which we just saw.
This is the sum operation written as a member function, so sum of V3. Well V3 in what, we need
two arguments to make this sum. Now, that sum, the first argument is the receiver itself. So,

coming over here, so we are doing ut.sum of at/2, so ut is one V3 which is being added to at by 2

which is another V3, so in this case this v is going to be at/2 and ut is going to be the receiver for
this.

Alright, so now what how does this functions work. We are supposed to add up the 2 vectors and
pass the resulting vector. So we are going to create the result that over here. V3 of v is going to
be our result vector. Now, the x member of this should be the sum of this ut x and at/2 x. So this
is ut x and this is at by 2 x; similarly y, similarly z. And then we return this vector so that is how

this sum works.

Scale is similar, for the scale so we have u.scale(t). So, u is the receiver and t is the argument. So
t is, the value of t is placed in f, so again what we are we calculating, we are supposed to
calculate the result which is V3 vector, which is the scale version of the receiver. So, to
implement that this is the x member of the receiver, we scale it up by f and put it in the x

member of our result V3. And so we construct all V3, the 3 vx, vy, vz and then we return v.

How does it look like in this function? Well we wanted to calculate u times t so that it is scaling
so we partial result we put over here. Then we wanted to calculate at square so that is a times
scaling by t square by 2. So a.scale of t square by 2 and then we have to add up these two things.
So, that is what is happening over here. Finally, we have to take the sum of the length of that

sum and so that is happening over here.

And | should say that we do not necessarily need to have so many variables if we do not want.
What is happening over here is we are going to scale and then the result is going to be summed
with the scale version of this. And that we can take length, we can apply the length member
function to this entire result. And we are going to, we will then get the length. So, here we can
think of this as one long complicated expression, instead of that we have broken up that

expression into 3 separate expressions which are of course related.

(Refer Slide Time: 15:40)

What we discussed

* Syntax of member functions
+ A member function is physically placed inside the struct definition.
+ Acall to a member function looks like:
receiver.function-name(...)
+ The member function executes like an ordinary function, with receiver
being an additional argument.
— The syntax highlights the special relationship of the function to the receiver.

~ Receiver is implicitly passed by reference, i.e. the call can modify the members
in the receiver.

* The benefits of this syntax will become clear soon.

So, what we have discussed? So we discussed the syntax of member functions. We have said that
member function is physically placed inside the struct definition. And we said that the call to a
member function looks like receiver.function_name followed by the arguments. The member
function executes like an ordinary function with the receiver being an additional argument and
the syntax makes the receiver look very different and indeed it is very different. It has a special

relationship.

There is nominal special relationship in that the receiver is being definitely passed by reference
but in addition to that somehow if I write say v.something, then I know this is something which
is happening and it has some special meaning in the context of v. Usually. Or it tells me look this

the code for this function will be found wherever v is itself defined.

We also said that the receiver is implicitly passed by reference and so the call can actually be
modified by the members in the receiver. And this syntax is reasonable but you might ask well
we really need it? We have used the usual function called syntax, so that is that is not quite clear

yet, but it will become clear quite soon. So we will take a quick break over here.

