

An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture 20

 Part-1 Introduction to Member Functions

Hello and welcome to the NPTEL course on an introduction to programming through C++ I

am Abhiram Ranade and in this lecture I will continue to talk about structures. So, some

reflections on what we have seen so far.

(Refer Slide Time 00:36)

So, we proposed that all attributes of each entity in our program should be grouped into a

structure and we said that the benefits for this are that it would reduce the clutter overall it

will make it easy to pass the entity to a function, we can pass it as a single argument rather

than all the different variables which are associated and because we have fewer arguments,

we will be more likely to write lots of functions, and also each function will have its concern

very limited. And therefore understanding what is going on in the function and reasoning

about it in general will be easier to do.

(Refer Slide Time: 01:24)

Now here is an observation about how such entities are processed. So typically, there may be

many attributes that an entity might have but they are accessed in only a few different ways.

So I am going to take two examples, one is a vector from physics and another is the queue

that we had in taxi dispatch problem that we saw earlier.

So in both these cases the vector and the queue will have many attributes or many members,

but you will note that usually we do to read or update the individual members in isolation. A

natural operation requires us to simultaneously access or update several attributes, and in a

very specific manner. So what does it mean? So it means really, that we should support this

kind of access and update rather than the update involving individual members.

(Refer Slide Time: 02:56)

So let me show these actually these examples little in more detail. So, vector from physics so

in physics vectors are used to represent lots of things velocities, positions, displacements,

electric fields and say if it is a vector in three dimensions, then it can be indicated by its

components in the x,y,z directions. So maybe we might have a vector type V3 and it contains

members x, y, and z.

There could be other representation as well, I mean there could be the polar representation for

example or the cylindrical coordinate representation. So, here is a key observation so for this

representation you will rarely read just the x component or rarely update just the y

component. What you typically do is, will involve something with will involve all three

coordinates so maybe we will add two vectors together or maybe we will scale up a vector.

So both these operations will involve changing all the coordinates and the change will happen

in the very specific manner.

(Refer Slide Time: 04:05)

The taxi dispatch problem we saw earlier, and it is discussed in chapter 14 of the book. So

briefly we have customers arriving and have to be assigned to waiting taxis, and important

part of that solution was a queue, and into this queue we put IDs of the waiting taxies or

rather the IDs of the waiting drivers and the main part of the queue was an array and these

elements where the one in which we store the IDs, and then there was a variable nwaiting

indicating how many drivers were waiting and variable front which indicated the position of

the first waiting driver.

And again, we can make the observation that the queue was accessed using operations insert

remove and initially we had to set nwaiting=front=0. We did not arbitrarily examine the

elements of the array or change n waiting or front in isolation. So whenever we make the

change there was some high level operations that we had in mind and over code was

implementing that high level operation.

(Refer Slide Time: 05:38)

So the insight from all of this is that first of all we should put the all the attributes of an entity

into a structure but in addition, we should provide functions with which to access the

attributes. And these member functions these functions are customarily member functions or

the functionality that we want for accessing is provided by something called member

functions and these member functions are the main topic of this lecture.

So to put it differently we should avoid accessing attributes directly, why is that, well very

likely this indicates that we are doing an operation that is not been clearly thought through

and therefore may be it contains errors. So, clearly something real or even abstract, but sort of

something that we clearly know, something that we clearly understand like a queue or a

vector has its own logic and that logic has to be incorporated into functions and we are going

to describe this notion of member functions which is going to be most useful for

incorporating such logic. So we think about and catalogue the right ways of accessing an

entity.

(Refer Slide Time: 07:09)

So here is the outline of this lecture, we are going to have a bit more discussion on the vectors

from physics then we will introduce this notion of member functions and I should mention

here that member functions were not present in C, were an extension to what we inherited

from C and the extension is first proposed and implemented in C++. So, this is kind of a more

modern feature if you will. After discussing member functions, we will talk about taxi

dispatch and see how that as well can be written using member functions. Alright, so what

did we discussed in this part of the lecture.

(Refer Slide Time: 08:08)

So we said that it is not enough to just define a struct to hold entities. Usually we will also

want functions which work on the structs in C++ we can make the functions a part of the

struct definition itself and such functions are called member functions. In some ways,

member functions are similar to control panels found on the front of appliances. So, you are

expected to operate an appliance through the buttons or other controls that have been

specifically provided. You are not expected to innovate or you are not expected to do tricky

things when you operate an appliance say for example you are not expected to open the back

and change some capacitors or change some wirings.

So if you want to change the channel on a television there is a very very clear way to do that

and analogously, the thought is that member functions indicate to you what is sort of the clear

proper way of doing things and in some sense you do not want users to go looking into the

data members themselves and changing the data members because they might be making

mistakes in doing that. So next, we are going to develop this idea and for that we are going to

look at the vectors from physics but, let us take a quick break.

