
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of computer science and Engineering,

Indian Information Technology Bombay

Lecture 19 Part 4

Structures

Pointers and lecture conclusion

Welcome back.

(Refer Slide Time: 0:29)

In the last segment we did a somewhat detailed example of how structures could be used and

how they might presumably increase the readability of the overall programs. Now, in this

segment we are going to talk about how pointers can be used in conjunction with structures and

we will also have a conclusion for this entire lecture sequence. So, we have seen pointers earlier

and pointers to structures are created in a natural manner.

(Refer Slide Time: 0:59)

So, we have in this statement we are defining a disc. So, this is a disc, a variable of type disc and

we are also defining a pointer to a structure or variable of type disc. So, this pointer is dptr. And I

will just remind you what this is. So, this is a disc. So, I guess we have had two kinds of disc.

Now, but this is a disc in which we have the first member was a point and here we are saying that

the x coordinate is 2, the y coordinate of that center is 3 and then the radius is 4.

Now, we can do the normal pointer operations on structure pointers as well. So, for example, I

can write dptr equal to the address of this disc type variable d1. So, that is what you normally do

and then I can take, I can dereference this dptr as well. So, if I get dereferenced dptr, what do I

get? I get d1 itself. But then I can take its radius member and I can say, “Look I want the radius

to be 5 rather than the 4 that it currently is.”

So, that is what this statement is going to do. Now, this idiom, *x. comes up quite frequently, and

therefore, C++ gives a different way of writing it. So, here is another operator, the arrow

operator, which is made up of the characters minus and greater than, you should read it as arrow.

So, *x.y can be written as x->y. So, in x->y, this x should be a pointer and y should be a

member.

So, I could have written this statement as this. So, I could have written dptr->radius equals 5, not

dptr.radius. If I want to write dptr.radius, then dptr had better be a disc type variable. But dptr is

not a disc type variable. It is a pointer double disc type variable, and therefore, I should use this

arrow which dereferences first as well.

(Refer Slide Time: 3:46)

Now, pointers can be structured members as well. So, I can have struct disc2 which has double

radius and which has point, but this time my member is not a point, but a point* or it is a pointer

to a point. So, f.centerptr equals to address of P. So, this is a pointer and into it I am storing the

address of this point. Now, I can, I want to print the x coordinate of the center of this disc d. So

how do I get that?

So, I get to d.centerptr which gives me a pointer to the point which is the center and since, this is

a pointer, and I want the x variable, or the x member of it I write arrow x. Then I can have disc2

f. So, F is another disc 2 and maybe I can set it center ptr also to the same point. So, essentially,

these, I am making these to be concentric disc, but there is a subtle point over here. If I change

the center of this then the center of this also changes. So, you should do this only if you intend

that. And yes, this might be a possible motivation for using pointers, so that we can have discs

that are sharing their centers. And we can do similar things. We can set f.centerptr->x equals 15,

that where set the coordinate for the disc d as well. This will also print out 15.

(Refer Slide Time: 6:09)

Now, with pointers especially in this current context, we might want to say that a particular

pointer is not pointing to anything at all. For that there is a keyword ‘NULL’ which is reserved.

So, it can be assigned to any pointer to indicate the pointer does not contain does not point to

anything meaningful. We have remarked long ago that a pointer to discs cannot be assigned to a

pointer to points, but null is kind of universal pointer. So you can assign, you can store null into

any kind of pointer. Essentially, you can, say that this particular pointer does not point to

anything at all and you can check whether the pointer points to thing by writing ptr==NULL.

(Refer Slide Time: 6:46)

Here is an example where we have pointers to the structure of the same type. So we have a struct

employee but inside it is an employee pointer. So, boss is a pointer to another employee. This is

allowed. This looks like it is referring to itself. In some sense it is, but what the purpose of

writing this at least in this limited context is we need to know how much how much space to

reserve for this point ptr or this member boss.

But all ptrs essentially have the same amount of space and therefore, this is okay. This, of course,

says that subsequently if you use boss it is expected to point variable of type employee. Here is

how you might create employees. So, this is says e1 is president, so the title is President and

there is no boss. So, presumably we might be writing this for somebody who was the head of the

institution. So that person does not have a boss. So its boss is pointing to the null.

There might be an MD in that institution, a Managing Director and the managing director's boss

is the president. So, here we can supply the address of the president and so address of e1 is

supplied over here. Similarly, e3, maybe the executive director, has as boss the president, so here

we are supplying the address of that president. Now, we can do this. So, we can say e2.boss, so

we get to this address of e1 over here and if you want to print out the title of the person.

So, to get to the title, the title is a member of e1, but we have an address of e1, and therefore, we

should put an arrow here. So, this will print president. Now, if we write e3.boss we will get to e1.

We will get a pointer to e1. If we take its boss member, an arrow to boss, then we will get null.

So, if we then print it out, then take the title, then we are making a mistake because null is not

pointing to anything, so we cannot take a title of it, and therefore, this is going to cause an error.

So at execution time, the program will say that there is something wrong.

(Refer Slide Time: 9:47)

So what did we discuss in this lecture? So we talked about structures and we said that structures

enable us to group together variables of different types. Now, I should note that arrays also group

together variables, but in arrays the variables are of the same type, whereas in structures they can

be of different types. They may be of the same type but they can be of as many different types as

you want.

Structure name behaves like a variable. So, the structured name does not denote the address of

that structure, but it denotes the content of the structure. So, if you pass it or if you copy it the

content gets copied. Again this is something different from the way array names behave. And

then, why we got onto this, we did all this because by grouping things together, we can reduce

the clutter in our argument lists and we can organize our data better.

And because our clutter is reduced we are more inclined possibly to write smaller functions and

these functions can be written as different level. So, as we saw in the example, the main function

was written at a very high level. So, whereas the called functions, the other function sort of dealt

with the internals of the disc, whereas the main function just said, “Oh, here are do these things

with a disc without really worrying about what is going on inside.”

So, let me conclude this lecture then by saying that, structures are a way by which you can

improve the readability of your program, because they help you to group all the attributes

associated with an entity into a single structure or a single super variable. And as always I will

suggest that, please, look at look at the problems at the end of this chapter. Of course, the next

chapter, the next lecture will also continue with chapter 17. So, maybe you can wait until the

next lecture to look at the problems at the end of chapter 17. Thank you.

