An Introduction to Programming through C++
Professor Abhiram G. Ranade
Department of computer science and Engineering,
Indian Information Technology Bombay
Lecture 19 Part 3
Structures
An example program

Welcome back. In the previous segment we discussed various operations on structures.

(Refer Slide Time: 0:18)

What we discussed

* Various operations on structures:
— Initialization
- Nesting
— Passing and returning from functions
— Creating arrays

Next: detailed example

Now, we are going to put together all these things into a somewhat longish example.

(Refer Slide Time: 0:29)

Example

Given a n disks in the plane, determine if they intersect.
* We have solved this earlier
* Structs enable us to write this in a nicer manner.
* Basic struct that we need:
struct disk{
double centerx, centery, radius;

So, here is the problem that we are going to solve. So, given n discs in the plane determine if
they intersect? You may remember that we have written code for this earlier. Now, with structs,
we are going to write the same code or code for the same job, but you will see that in some way
that a code will be nicer. So, let us start with the basic struct that we need. So this is a struct disk
and instead of having point, I could have had points as well, I could have just put in center x

center y and radius as its 3 members.

(Refer Slide Time: 1:10)

The main program

int main(){
const int n=5;
disk disks[n];
readData(disks,n);
cout << checkAllPairs(disks, n) << endl;

}

* Without structs the function calls would require centerx,
centery, radius tobe passed separately.

* In this program we are “thinking at a high level” — not worrying
about what is contained inside d 1 sk.

So, let me get to the main program. So, we are going to have five discs just for simplicity and so
| have put in constant int n to denote the number of discs. And now | am just going to create just
a number of array of disks. And so by the way note that in earlier case what we had to do in the
main program was to create not just a single array but an array to store the coordinate another

array to store the Y coordinate and another array to store the radius.

So, that makes the program verbose and furthermore, it does not really tell you that something is
being done about discs, unless you write a comment, but here very compactly you understand
that, yes, that we are doing something about discs. The first operation that we are going to
perform is to read data. You will note that in the program that we wrote earlier, we put the code

for reading right here, but now the code is elsewhere.

But here in the main program itself, if you know what that code is supposed to be doing is
reading data and reading and in particular this looks like we are reading the various attributes of
the discs. So, again this makes for better readability. Then we have another function which says
check all pairs. So, you can tell easily that look we are going to do something with all pairs and
the result is going to be printed.

So that is it. Main program is quite short and sweet and it has steps which have been given names
and these steps are functions and we are passing data to the functions but the data is not, it does
not look like a lot of data. | mean, there are not many names, there are not many parameters,
arguments that we are passing. We are just clearly passing the main argument which is the disc

the number of elements in it.

So there is a certain kind of compactness or neatness to this entire program. So, without structs,
so you would have to you have lots of arrays being passed. So, that would just look a bit more
cluttered. And in some sense, in this program, we are encouraging, thinking at a high level. So,

here when we write read data we are saying, “Oh, somehow it will be read.”

| do not want to think about how exactly that is going to happen, but I know that it is going to
happen and similarly, check all pairs. How is it going to happen? It is given somewhere else but
this is what | really want to happen. So, this sort of tells you what is going at a higher level and
does not force you to read all the details and then figure out. So, let us go to this function. First of

all, reading the data.

(Refer Slide Time: 4:25)

Reading in the data

void readData(disk disks[], int n){
for(int i=0; i<n; i++)
cin >> disks[i].centerx
>> disks[i].centery
>> disks[i].radius;

Reading the data is fairly natural. You go over all the elements in the array and read data into it.

(Refer Slide Time: 4:30)

bool checkAllPairs(disk disks[], int n){
for(int i=8; i<n-1, i++)
for(int j=i+l; j<n; j++)
if(intersect(disks[i], disks[j])) return true;
return false;

}
bool intersect(disk d1, disk d2){
return pow(dl.centerx-d2.centerx,2) +

pow(di.centery-d2.centery,2)
< pow(dl.radius+d2.radius, 2);

Then we are going to check intersections. So, check all pairs or maybe | could have called it
check all intersections that might have been even nicer name. Anyway, so there are n discs which
are passed as arguments and we go over all pairs and we discussed this last time, when we solved
this problem earlier. That we have to have 2 indices, i and j, and i should go from 0 to n-2 really,
and therefore, we have written i less than n-1. And j should go from i+1 to n-1, and for each such
pair we need to check whether those pairs intersect? If they interest we return true. If the loops
execute without finding an intersection, then the controls will reach this point over here and at
that point we know that no intersection was found and so we came in return false. Now, this
function contains really just one kind of an idea. So, it says, “Look, | want to check intersection
between every pair.” So, check between every pair is what is happening over here. How exactly
the checking for a single pair happens that is described in intersect function.

So, this comes over here and notice that the intersect function only talks about 2 discs. It does not
have to know about the entire array. So, the point is that when we write each function, our
viewpoint is somehow limited, and that helps us think about our job, think about whatever code
is doing a little bit better. So, here our rule was that we are going to look at the distance between

the centers, and so this this whole thing is the square of the distance between the two centers.

And this should be smaller than the square of the sum of the radii. So, that is what this check that
is the check that is happening over here and the result is being returned.

(Refer Slide Time: 7:05)

Demo

* diskintersect.cpp

®

So, let us do a quick demo of this.

(Refer Slide Time: 7:12)

iatersectidine 01, A 1]
returs

powl g1, centers-a2, contern, 2} + powidl,centery-0.contery, 2|

< powldl. radissed2. radias, 2);

}
checkAT1Padrsfalvi wull, "
for| = la-l])
for{ =41} Jo a4l
iflintersactidisks|il, gisksijl}) retarn
retyrs :
}
resslotadain ausisfl, "

forl oot =l fa; 1s+)
tia > disks[i].ceaterx >> disks[i].centery >> dists{i].radiss;

}

aDisksidin aisasll, |

initCamvas();

for(=4; fe 1e)]

e <l lil centers, cionslil.centery, cinnlil. radtus);

C.amprint{);

A e
@—nma Tep Ll (Ceorl Momrev] 2:56M 0.9 —— Mg

So, here is my here is my program: the disk structure type, the intersect function, check all pairs
function, read data. Now, | have also added over here a show discs functions. So, at the end it is

going to show us the disc on our cameras. So, this place we will know whether our intersection

answers is correct or not.

(Refer Slide Time: 7:36)

waitisl;
}

t maiz{H
const int ==5;

inl;

readataldisks,2);
cout << checkAliPalrsidists, n) << eadl;
shoisks (disks,nl;

}

{d s
HE)n daimerctap S (Gl e 16 0,51 —— M

Following this we have the main program. So, really what we had on the slide plus this
additional show function, so in the main program as well we are going to print the answer
whether there is an intersection or not and then we are going to show whether the disc are

intersecting or not. Let me just shift a little bit so that you can see this character.

(Refer Slide Time: 8:02)

! T ——
. ——
. gemeet: https: /A 1. com
* Supgert: https://atunte. con/aovantage

Systes iaformstion as of Tee Apr 38 12:17:52 IST IS

Systes loag: 1S Processes: =

Usage of /: S5.50 of 15,6063 Users logged in: 5

Memory usage: &% 17 address for ethd: 19.129.3.2
Seldp stz N

= There is 1 20ebie process.

Gragh this dota and sansge this systes at:
https:// landscape. canonical. con/

152 packages can e updated.
¥ wdates are secerity wpdates,

You hase new mall.

Last legin: Tue Apr 39 96:11:35 2019 from HL1M.Z.T5
~tath: fusr/sbin/quota: Mo such file or directory

~) ow

) logeet

Coenection to surys.cse.iitd.ac. in clesed,
~Desktop/npteliveekld 1 of .. /week9
~/Desktop/nptel/veekd © cper Lectured. 1.pptx
~Desttep/npteliveekd = &

esacs pointers.cpp

Stopped eRaCs printers.cpp
ctop/npteliveeid & sor giskintersect.d]

e e
Systes information as of Tee Agr 30 12:17:52 IST M1%
Systes loas: 0.15 Pracesses: 55
Dsage of /: 55,56 of 15,6268 Users logged in: 5
Memary usage: &% 1P acdress for ethd: 19.129.3.2
Sed mage: W

= There 15 1 2oabie process,

Gragh this cata and manage this system at:
https:// landscape, canonical. con/

152 packages can be updated.
wdates are secerity wdates,

Yoo have nev mail.

Last login: Tue Apr 30 08:11:35 2019 from W.IMS.2.75
-tash: Jusr/shin/quota: Mo such file or directory

~) tw

~) logeet

{oenection to surys,cse, fit.ac.in clased,
~flesktop/npteliveski @ ¢d .. \veekS
(Desctep/npteliveekd : cpee Lectured. 1.pots
~Pesktop/npteliveekd © \

esacs pointers.cap

{1+ Steppes RACS PIINTErS.COP
ktep/nptel/vechd s diskintersect.cpp
disklatersect.cpp -Wall /Users/athiraa/sioplecos/Lid/ 1ibsprite.a -1/ ners/
Lran/sinplecpp/inclode ~T/cpt/X11/eclude ~Liept/X11/LEd ~1X2] ~stéscesl)
top/nptelivenkd : ./0.cut <gisklstersect.]

(B L 5 N X) SO feiww L

. ———

Sy use: N

= There is 1 20sbie process.

Gragh this data and sanage this systes at:
https://landscape. canonical. con/

132 packages can e updated.
€ wpdates are secarity updates.

Tou hase new mail,

Last leglin: Toe Apr 30 08:11:35 2009 from ML1MG.2.75
~ath: fusr/sbin/quota: Mo such file or directory

~) ow

~) logest

Coenection to surys.coe.iitd.oc. in clased,
~iDesttop/npteliveekld : o .. /weekd
~/Desitop/mpteliveekd = coee Lectured. . pptx
~fhesktep/npteliveekd & &

encs pointers.cop

2 El 8 14

1]+ Stoppes eRICS printers.cpp
~/Desktep/mptel/veekd & see Siskintersect.pp

* g+ diskIatersect.cpp -Wall Mlsers/abhiran/sioplecpp/Lid/ Libssrite. s ~Lsers/
abhiran/sinplecps/ inclode ~I/opt/XI1/ declode -Liopt/KIL/LED ~1X21 ~stescesl]
~/Desktop/nptel/veekd & . /o out <diskintersect,

diskIntersect.cpp diskintersect.catl diskIntersect.dat~
diskIntersect.cpp~ diskintersect.dotd

- top/npteliveekd @ L /a.cut <Siskintersect,datl

[0 W — - — -
e | ——

s,

this systes at:
cal.con/

235 2019 from W.IN.LT5
kch file or directory

s o 8. 0 clased,
~iDesttop/npteliveeki & of .. /weekd
~Desktep/npteliveekd = cper Lectored. 1.potx
~fhesttop/npteliveskd = &
encs pointers.cop

1]+ Stoppes RIS printers.cpd
[Desktop/nptel/veekd & so Siskintersect.cpp

* go+ diskIstersect.cpp -Wall /lsers/abhiran/sioplecpp/1id/ Ubssrite.d ~1/Ssers/
abhiran/staplecps/ inclode ~I/opt/XI1/ soclode ~Lispt/KIL/LED ~1X21 ~stestes]]
~Desktop/nptel/veekd & /3. out <diskistersect.

diskIntersect.cpp diskintersect.catl disidntersect.dat
diskIntersect.cpp~ diskintersect.datd

top/npteliveekd & L /a.cut <giskintersect,datl

So let us compile this and we're going to run it and we're going to run it by redirecting the file.
So, .datl is one file. So, the answer is 1 and here is the plot. So, here are the circles so clearly
there is intersection and therefore the answer was 1.

(Refer Slide Time: 8:46)

© Yo - ——

. —

S wse: N
= There is 1 20sbie process.

Gragh this dota and sanage this systes at:
https://landscape. canonical. con/

152 packages can e wpdated.
¥ wpdates are secerity updates.

Tou hase nev mail,

Last legin: Tue Apr 30 €8:311:35 2119 from WLIN.ZLT5
~baah: fusr/sbin/quota: Mo such file or directory

~) o™

~) logest

Coenection to surys.cse. iith.oc.in clesed,
~iDesitop/nptelivekll : of .. /veekd
~/Desktop/nptel/veekd = oper Lectured. 1.pptx
~fbesttep/npteliveskd & 4

encs pointers.cop

[1]+ Stoppes emacs printers.cpp
fDesktep/mptel/veekd & goe Intersect.cpp

fPesitop/nptel/veekd @ /3. 0ut <diskistersect,

diskintersect.cpp~ diskintersect.dotd
top/npteliveekd & L/a.cut <giskintersect,datl

ktep/nptelivenkd : ./).cut <disklstersect.dat]

. g n;khtemn.cu -l Musers/abhiran/sioplecpp/1id/ Libssrite. s ~L/sers/
abhiran/staplecpp/ inclode ~L/opt/X11/ declude -Lispt/MIL/LEL ~1X11 ~Stestesd]

diskIntersect.cpp diskintersect.datl diskIntersect.dot~

R_L ___1X_ K J
.

85,
this systes at:
tal. con/

.

35 2019 from W.IE2L7S
ch file ar directory

v

~Desktop/nptelivenid =
encs pointers.cpp

{1+ Stopped e2Cs printers.cps
~idesttop/npteliveekd © s+ diskintersect.op

fPesktop/npieliveckd L /a.out cSiskistersect,

diskIntersect.cpp~ diskintersect.dat

~Desttop/npteliveekd & /2 cut <siskintersect.datl
1
esktop/nsteLRekd ¢ L /a.cut <slskintersect,dat?

» g+ diskIatersect.cop il /Users/adhiran/sioplecos/ Lid/libsprite.s ~LiWsers)
abhiran/simplecns/ Inclede ~1/opt/XIL/ aclude ~L/spt/MI1/LES ~1X31 ~stdscorl]

diskIatersect.cpp diskintersect.catl diskIntersect.dots

So, let me do one more. So we do it for 2 and this time there is no

answer is 0.

intersection and in fact the

(Refer Slide Time: 8:58)

What we discussed

+ Adetailed example

* By using structures, our functions have fewer arguments.
* Better readability, less clutter

* Qur overall program = many small functions.

+ Small functions are easier to understand at a glance.

* Main program is at high level

* Other functions deal with disk details.

Next: Pointers with structures, conclusion of lecture.

So what have we discussed in this segment? So we discussed a detailed example and here are
some important points that you should observe. So, by using structures, our functions could be
written with fewer arguments and this makes for better readability, less clutter and, of course,
less possibility of errors as well. We will not forget giving a function or we will not exchange

two arguments. So, such errors are sort of very-very easily prevented.

Our overall program can be now more easily written as a bunch of small functions. If we had lots
of arguments to be supplied, we sort have said, “Oh my God, | am tired of suppling all these
arguments”, and so you might have tried not to write small functions. But writing small functions
is a good idea because in a small function you can just one idea, and therefore, you can

understand that function and make sure that it is correct a lot more easily.

Then we also said that because we break things up into functions, each function has its own
limited use. So, for example, the main program has a very high-level view, the other functions
may have views at their own levels. So, in the next segment we are going to talk about pointers

with structures and we will also conclude this entire lecture series.

